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ABSTRACT
Multilateration techniques have been proposed to verify the integrity
of unprotected location claims in wireless localization systems. A
common assumption is that the adversary is equipped with only a
single device from which it transmits location spoofing signals. In
this paper, we consider a more advanced model where the attacker
is equipped with multiple devices and performs a geographically
distributed coordinated attack on the multilateration system. The
feasibility of a distributed multi-device attack is demonstrated ex-
perimentally with a self-developed attack implementation based on
multiple COTS software-defined radio (SDR) devices. We launch
an attack against the OpenSky Network, an air traffic surveillance
system that implements a time-difference-of-arrival (TDoA) multi-
lateration method for aircraft localization based on ADS-B signals.
Our experiments show that the timing errors for distributed spoofed
signals are indistinguishable from the multilateration errors of le-
gitimate aircraft signals, indicating that the threat of multi-device
spoofing attacks is real in this and other similar systems. In the
second part of this work, we investigate physical-layer features that
could be used to detect multi-device attacks. We show that the fre-
quency offset and transient phase noise of the attacker’s radio de-
vices can be exploited to discriminate between a received signal
that has been transmitted by a single (legitimate) transponder or by
multiple (malicious) spoofing sources. Based on that, we devise a
multi-device spoofing detection system that achieves zero false pos-
itives and a false negative rate below 1%.
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•Security and privacy → Spoofing attacks; Intrusion detection
systems; •Networks → Sensor networks;
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1. INTRODUCTION
Vehicle tracking is a key feature to enable safe navigation and col-

lision avoidance for airborne, ground, and maritime traffic control
systems. For example, in commercial air traffic control systems,
the locations of all aircraft are continuously monitored to inform
pilots and air traffic controllers on the ground about potential colli-
sions. Similarly, collision avoidance systems in future autonomous
car navigation systems will require car tracking to prevent collisions
at road intersections [23].

A popular tracking approach is to let the vehicles determine their
own positions and broadcast them to nearby nodes over the wire-
less channel. In the next-generation air transportation system, each
aircraft determines its position with the aid of global navigation
satellite systems such as GPS, and this information is periodically
broadcasted over the Automatic Dependent Surveillance - Broad-
cast (ADS-B) system to surrounding aircraft and sensors on the
ground [38]. This autonomous tracking paradigm based on position
claims has several advantages, but it makes the system vulnerable
to location spoofing attacks [4, 32]. For instance, an attacker can
inject false position messages in order to emulate the presence of
a “ghost" aircraft into the air traffic surveillance systems, or it can
spoof the location of a real aircraft by sending false position claims.
It has been shown that these attacks are easy to launch on real sys-
tems [32]. The ability to verify the location claims in such systems
is therefore of high importance [28].

To counteract spoofing attacks on ADS-B and similar systems,
various multilateration-based verification techniques have been pre-
viously proposed in the literature [25, 9, 34, 10, 11]. These schemes
generally differ in the adopted ranging techniques – time-difference-
of-arrival (TDoA), time-of-flight (ToF), or mobility-differentiated
time-of-arrival (MDToA) – however they all share the same under-
lying mathematical principle of lateration. While these solutions
are effective at preventing single-device attacks, where the adver-
sary sends spoofing signals from a single radio location, they were
not designed to be secure against multi-device attacks, where the
adversary controls a set of geographically distributed spoofing de-
vices. In this scenario, the attacker places a separate spoofing device
in the proximity of each receiver and therefore sends appropriately
delayed copies of the same signal to different sensors. In this way
the attacker can spoof an arbitrary position without being detected
by the multilateration verification scheme.

In this work, we move beyond the single device attacker model
and evaluate the feasibility of multi-device attacks. We show that
multi-device location spoofing attacks are practical to implement
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and can successfully compromise existing multilateration systems.
To this end, we perform controlled attack-experiments against the
OpenSky Network [35], an air traffic surveillance system that
implements the time-difference-of-arrival (TDoA) multilateration
method for localization of aircraft with ADS-B signals. The Open-
Sky Network is a crowdsourced large-scale ADS-B sensor network
which captures 60 percent of all aircraft flying over Europe.

In the analyzed air traffic control system, as inmost other systems,
the ground receivers are at publicly known locations and placed far
apart (usually several km) meaning that the attacker can easily pre-
vent its spoofed signals from reaching multiple receivers. Closer
placement of receivers would still not prevent attacks if an attacker
deploys directional antennas and reduces its transmission power.

The main challenge for the attacker is to precisely synchronize
its devices in order to tightly control the arrival times of spoofed
messages at the receivers. Our setup consists of distributed com-
mercial off-the-shelf (COTS) software-defined radio devices on top
of which we implement our spoofing system. Our results show that
by relying on standard synchronization techniques (e.g. GPS), we
can successfully spoof locations within the OpenSky Network with
sufficient accuracy. This result naturally extends to other multilat-
eration systems and therefore fully supports the use of multi-device
attacker models in the analysis of all location verification solutions.

In order to detect multi-device location spoofing attacks, we pro-
pose to leverage two physical-layer features, namely, transmitter
tuning frequency precision and transient phase noise. Relying on
these features, we develop a detection method for multi-device
spoofing attacks and evaluate its performanceswith real-worldADS-
B data. Our results show that our method achieves zero false pos-
itives and a false negative rate below 1%, with a detection delay in
the order of few seconds.

The contributions of this paper are the following:
∙ We investigate the feasibility of launching multi-device at-
tacks on wireless localization systems. To the best of our
knowledge, this work is the first to experimentally validate
such an attacker model.

∙ We propose two new physical-layer features to detect multi-
device attacks.

∙ Wedemonstrate that our features are able to distinguish spoof-
ing and legitimate signals in less than ten seconds with less
than eight receivers in the context of air traffic control.

2. BACKGROUND ON ADS-B SECURITY

2.1 System and Threat Model
The system model we consider in this work is motivated by air

traffic monitoring (ATM) systems. In the next generation air trans-
portation system, aircraft determine their own position from satel-
lite navigation systems and broadcast it periodically to the surround-
ing ground stations. These position reports, called “squitters" in
avionics jargon, represent the location claims of the aircraft along
a track. In future, these location claims will be transferred over the
ADS-B system. ADS-B does not define its own data transmission
protocol but relies on a legacy wireless data link from secondary
surveillance radar called Mode S [30]. Neither ADS-B nor Mode
S provide any security guarantees such as authenticity or data en-
cryption. ATM localization is therefore vulnerable to two kinds of
spoofing attacks [32]:
Threat 1: An aircraft may broadcast periodic position updates

which do not correspond to its real track. This attack is con-

ceivable e.g., when a malicious pilot fakes the trajectory of
an hijacked aircraft.

Threat 2: A third-party attacker on the ground injects fake posi-
tion updates which do not correspond to any aircraft but look
authentic to the ADS-B reception system. This produces one
or more “ghost" aircraft in the air traffic monitoring system.
This attack could be used by a malicious party to create con-
fusion for pilots or air traffic controllers on the ground who
have to deal with the fake information in their flight proce-
dures and collision avoidance processes.

2.2 Limitations of Existing Countermeasures
The ADS-B system has not been designed for security, and it can-

not prevent or detect the attacks described above. Interviews con-
ducted in the aviation community [37] suggest that ADS-B signal
spoofing is an open problem in deployed air traffic monitoring sys-
tems. However, given that the ADS-B signals are typically received
by multiple receivers on the ground, it is possible to verify the lo-
cation claims using multilateration. Several techniques have been
proposed in the literature. For example, the authors of [25] pro-
pose to use the time-difference-of-arrival (TDoA) between differ-
ence receivers in combination with hyperbolic localization to verify
the position claims in ADS-B messages. Capkun and Hubaux [9]
build on the time-of-flight (ToF) derived from a secure distance
bounding protocol between a prover and several verifiers to devise a
verifiable multilateration system that is secure against adversaries.
Schäfer et al. [34] have suggested a mobility-differentiated time-of-
arrival (MDToA) method to verify signals between distributed re-
ceiver sites without the need for tight time synchronization among
the multilateration sites. Chen et al. [10] perform statistical hypoth-
esis testing on the residuals after the multilateration to detect loca-
tion spoofing attacks.

While these techniques differ in the ways the location verifica-
tion is performed, they all share the common assumption that the
attacker is using a single device and therefore transmits spoofing
signals from a single location. This assumption may hold true for
Threat 1 when the aircraft aims at hiding its actual location by send-
ing out fake position updates from its transponder. However, in
both threat models, an attacker could rely on multiple spatially dis-
tributed devices to control individually the time of arrival at each
receiver by sending delayed copies of the same signal at different
locations.

Alternative approaches to secure ranging and localization sys-
tems are through the deployment of covert base stations (CBS) [8],
or by using multiple or directional antennas [45] at the receiver lo-
cations. CBS provide a secret input to the system due to the fact that
they are either hidden, meaning the attacker does not know their po-
sition during attack time, or they are in randommovement, to which
the attacker would need to adapt constantly. CBS help securing a
wide variety of localization systems, but they are not applicable in
ATM systems. ATM’s ground systems are large and often stati-
cally deployed at sites of existing publicly known legacy sensors
and radar sites due to the readily available infrastructure.

By using multiple or directional antennas, it is to some extent
possible to check the angle of arrival of the signal and thus verify
the bearing of the transmitter. However, antenna systems that are
capable of determining the bearing of the signal are costly, and the
purpose of ADS-B is to reduce deployment costs by having simpler
omnidirectional antenna structures as opposed to the directional an-
tennas used currently for secondary radar [7]. Securing the system
with angle information is therefore also not well suited to secure fu-
ture ATM scenarios as these antennas will not be available in ADS-
B deployments.
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Sampigethaya et al. [31] proposed using aircraft to act as veri-
fiers of position claims through exchanging information with other
aircraft in the same airspace over an IP network. Current aircraft
systems fail to provide this functionality in multiple ways. Not
all aircraft are equipped with GPS technology, thus providing only
coarse-grained position and time information. If an aircraft was to
participate in a location verification scheme, high accuracy position
as well as time is mandatory. While aircraft receive the ADS-B
squitters from other aircraft and process them to give the pilots a
sense of their surrounding airspace, these signals are not recorded
with high-precision time information but rather forwarded from the
ADS-B transponder to the pilot’s cockpit display unit. Finally, only
the newest aircraft are beginning to be equipped with network tech-
nologies to transmit data between aircraft and ground. Implement-
ing a spoofing detection scheme on aircraft not equipped with gen-
eral purpose network technology would require transmitting posi-
tion and time information over conventional channels like Mode S.
These channels are already at their capacity limits with standard in-
flight transmissions and therefore will only add more congestion to
the network.

3. MULTI-DEVICE ATTACK ON TDOA
MULTILATERATION

In this section, we describe our multi-device attack setup and
show how it can be used to effectively spoof the TDoA multilat-
eration system used in the OpenSky network. Our main goal is to
determine the timing precision required at the attacker’s devices in
order to accurately spoof ADS-B location claims that are verified
by the multilateration system. We first describe the multilateration
system and the experimental multi-device attack setup used for our
analysis. Then, we present the results of the spoofing accuracy com-
pared to the localization accuracy of ADS-B signals from legitimate
aircraft.

3.1 Multilateration System
In our study, we use the multilateration system provided by the

OpenSky Network [35]. The OpenSky Network is a crowdsourced
ADS-B sensor network that collects among other things the peri-
odic position messages sent by the aircraft. As of today, the sen-
sor network comprises more than 50 sensors operated by volunteers
which are deployed across ten European countries. The sensor cov-
erage allows capturing around 60% of all flights that fly over Europe.
The received ADS-Bmessages are collected at a central location for
archival and real-time multilateration purposes. The OpenSky Net-
work has different types of sensors, but the multilateration results
are based on the Radarcapes from Jetvision [1]. The Radarcapes of-
fer nanosecond-precision timestamps that the sensors assign to each
ADS-Bmessage after being received. The clocks of the Radarcapes
that are used for the timestamps are all synchronized over GPS.

The multilateration technique employed by the OpenSky Net-
work is based on hyperbolic localization, the same method that has
been proposed for the secure verification of ADS-B position mes-
sages in [25]. Our results are however not specific to a particular
multilateration technique and the timing precision requirements for
the attack as well as the effects translate to other multilateration-
based verification techniques as well such as [9, 34, 10].

In hyperbolic localization, the multilateration is performed
through a ranging and a lateration step. The range R is the wave
speed v (close to the speed of light in air) times the wave propaga-
tion time T . The multilateration system estimates the ranges based
on the time-difference-of-arrival Δi,j of a signal at sensors i and j

as
Δi,j = Ti − Tj =

Ri − Rj

v
.

The second step is lateration. From the above equations for the
ranges and the known positions of the sensors (xi, yi, zi), the po-
sition (x, y, z) of the node to be localized can be estimated by cal-
culating (x̂, ŷ, ẑ) such that

(x̂, ŷ, ẑ) = argmin
x,y,z

n
∑

i=1
[|x⃗i − x⃗| − Ri]2,

with
|x⃗i − x⃗| =

√

(xi − x)2 + (yi − y)2 + (zi − z)2

where n corresponds to the number of sensors. To solve these equa-
tions, at least four sensors are needed. The resulting set of equations
is not linear and can not be solved analytically. Several methods ex-
ist to numerically solve the above problem which mainly depend
on the complexity and accuracy. For solving the equations, the
OpenSky Network relies on a computationally lightweight linear
approach [36]. This approach yields one of the most accurate linear
least square solutions for multilateration [19].
3.2 Attacker Implementation

The adversary’s goal is to spoof consecutive locations (x̂, ŷ) of
an aircraft over time such that the spoofed aircraft appears to be
flying along a legitimate path1. In order to remain undetected by the
multilateration-based verification system, the attacker must fulfill
the following requirements:

1. The ADS-B messages should look like legitimate signals.
The attacker must therefore make sure the ADS-B protocol
semantics are correct and that the pretended trajectory is plau-
sible (for example with a plausible speed, heading and alti-
tude).

2. The time difference of arrival Δi,j between all sensors must
be such as if the signal was transmitted from the spoofed lo-
cation.

3. Each sensor should only receive the signals from the intended
attacker device. If a sensor receives signals that are intended
for other sensors, it can raise an alarm by detecting delayed
copies of the same location claim.

To fulfill these requirements, we implemented a programmable
ADS-B transponder in C++ using software-defined radios. The
transponder consists of a regular PC and a USRP from Ettus Re-
search [2] as the radio front-end as shown in Figure 1. The main
design challenge was to achieve very tight time synchronization at
different transponders in order to precisely control the spoofed sig-
nal’s time difference of arrival at the receivers. Since radio sig-
nals travel close to the speed of light in free space, a timing offset
of 1 �s already translates to 300 meters ranging error. Therefore,
nanosecond-level precision is required between the transponders of
the attacker in order to spoof locations with meter-level accuracy.

This time synchronization accuracy is particularly difficult to
achieve on software-defined radios. Since the ADS-B signals are
1Note that we restrain ourselves in this work to spoofing of 2-
dimensional positions because wide-area multilateration systems
are not able to accurately determine the altitude of the aircraft due
to a bad dilution of precision (DOP) when all sensors are on the
ground. The attack setup we present can however be used to spoof
3-dimensional positions as well.
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Figure 1: Software-defined radio architecture of the transponders
for the attack. Time sychronization of the software-defined radios
(USRP) is achieved using GPS disciplined oscillators.

generated in software on the CPU of the PC running with an oper-
ating system, it is hard to control the exact time of a particular op-
eration on the CPU given the natural random jitter of the operating
system and the interface to the USRP. To address this problem, we
devised a software-defined architecture in which the PC only pre-
computes the messages and the required timing constraints for the
attack, while the FPGA on the USRP is doing the actual scheduling
of the transmissions over the radio front-end.

The transmitter pipeline works as follows. The code on the PC
(referred to as multispoof ), takes as input from a master PC an ar-
bitrary trajectory to be spoofed and generates the sequence of all
ADS-B messages that a transponder should transmit according to
the standard [30] when flying this trajectory. Important are the posi-
tionmessages which are sent twice per second including the spoofed
locations. These messages are then transformed to a stream of dig-
ital IQ samples on the PC according to the pulse position modu-
lation (PPM) of the Mode S data link. These computed IQ sam-
ples are then transferred to the USRP through the USRP Hardware
Driver (UHD). However, the ADS-B signals are not immediately
transferred over the radio front-end but first buffered in the internal
memory of the USRPs. The transmission times of these buffered
samples are different for each radio and carefully selected in order
to mimic the time difference of arrivals between the multilateration
sensors for the claimed locations. The FPGAs on the USRPs then
independently trigger the transmission of the samples of each ADS-
B message based on the times specified in the buffers.

The last challenge to solve is the time synchronization among the
USRPs. Classical software-defined radios such as the USRPs do
not provide enough clock stability for the intended purpose because
the clock used to trigger the FPGA is derived from a local oscillator
which significantly drifts apart for different radios. Our approach to
solving this problem was to replace the local oscillator of the US-
RPs with a GPS-disciplined oscillator (GPSDO). A GPSDO is an
oscillator which is controlled by a tracking loop locked to the GPS
signal. The GPS satellites are equipped with atomic clocks with
very high time stability and therefore provide an excellent signal
source for time synchronization. By locking the oscillators of the
USRP to the GPS timing source, the USRP are now synchronized
with very high accuracy and can trigger the transmissions at the cor-
rect times. The detailed schematics of the attacker setup is shown
in Figure 1.

3.3 Experimental Results
Equipped with the attacker setup described above, we demon-

strate in the following the feasibility to perform multi-device lo-
cation spoofing attacks in the OpenSky Network. In addition to
demonstrating the feasibility of these attacks, we further aim at un-
derstanding the limiting factors for the attacker and therefore per-
form additional benchmarks which serve to quantify the impact of
different factors on the spoofing accuracy.

Performing an experimental over-the-air attack on a system like
the OpenSky Network has some legal and safety implications, and
we, therefore, have to be careful when designing the experiment.
First, the 1090 MHz channel used to transmit ADS-B signals is li-
censed, and as such, only certified transponders are allowed to trans-
mit in this frequency band. Second, the spoofed messages may be
misinterpreted as legitimate signals by listening aircraft and ground
controllers in the neighborhood leading to safety issues for the regu-
lar air traffic. To avoid legal and safety complications, we decided to
minimize the risk of emitting spoofed messages to the outside world
asmuch as possible and perform the experiments by transmitting the
signals from the attacker to the receivers over shielded RF cables
whenever possible. Only to study the impact of the channel condi-
tions on the spoofing accuracy, we perform controlled over-the-air
experiments with an antenna. Furthermore all the over-the-air ex-
periments were conducted inside a large 7-floor concrete building
with shielded windows to avoid any leakage to the outside world.
We confirmed the same by measuring whether spoofed messages
were received from the outside of the building.
3.3.1 Controlling the TDoA between Individual Re-

ceiver Pairs
In the first series of experiments, we quantify the ability of the

attacker to control the exact TDoA for messages that are received
by individual receiver pairs. The ability to control the TDoA at two
receivers is the key to the success of the spoofing attack. The TDoA
is affected by various factors including (i) the time synchronization
error between the attacker devices, (ii) the measurement accuracy
of the receivers to determine the time-of-arrival, (iii) the synchro-
nization accuracy of the receivers themselves, (iv) and the channel
quality between the attacker devices and the receivers (multipath re-
flections may add different delays to the propagation paths between
sender and receivers). To discern the effect of these various factors,
we evaluate the TDoA between two OpenSky receivers in three sep-
arate experiments:
Over-the-air: In this setup, we use two spoofing devices. Each

spoofing device transmits its signals over an omnidirectional
antenna to the receivers. The distances between the spoofing
devices and the target receivers are 20 and 35 meters, respec-
tively. Both transmitters and receivers are placed within the
above-mentioned building. The wireless links between trans-
mitters and receivers are line-of-sight, however since the de-
vices are placed indoors, their channels will be affected by
multipath reflections. Hence, we consider this experimental
setup unfavourable for the attacker, since in reality, ADS-B
receivers are placed outdoors on elevated spots and an out-
door channel is much less affected by multipath reflections
than indoors. Nevertheless, we consider this experiment as
useful to understand the accuracy of the attackwhen the chan-
nel is highly affected by multipath (i.e., worst case for the at-
tacker).

Cable: In this setup, we directly connect the transmitters to the re-
ceivers with a shielded RF cable. Over cable, the channel is
in very much in favor of the attacker since it is not affected by
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Figure 2: Distribution of the TDoA between packets sent by two
spoofing devices. Over-the-air and cable experiments are close to
the baseline.

multipath reflections. Therefore, this setup is useful at quan-
tifying the noise caused by the synchronization error between
the transmitters of the attacker setup since channel effects are
ideal.

Baseline: This experiment is performed as a baseline to quantify
the inherent noise of the receivers in measuring the TDoA of
a signal that arrives exactly at the same time at the two re-
ceivers. To make sure that the signal arrives at the same time
at both receivers, we use a single transmitter that is connected
directly to both receivers over a T-connector and shielded RF
cables of equal lengths.

Figure 2 shows the distribution of the TDoA for our three experi-
mental setups when the spoofers are configured to produce a TDoA
of zero at the two receivers. Several interesting conclusions can be
made from the resulting distributions. First, the distribution for all
three experiments shows a comparable standard deviation. While
both cable-based measurements are distributed with standard de-
viation � of about 50ns, the measurements over the air yielded a
standard deviation of approximately 60ns. This indicates that the
primary source of noise is not related to the synchronization error
of the spoofer setup or the wireless channel but from the noise of
the receivers themselves. The distribution of themean TDoA values
are also quite similar. The over-the-air experiments hold a mean de-
viation of −7.5ns, the spoofers over cable a mean of 11.4ns, while
the baseline only differs −1.8ns from the expected mean of 0ns.
While both, the cable and over-the-air experiments do not perfectly
match the signals of our baseline experiment, they do not add much
additional error compared to the large uncertainty resulting from
the high standard deviation of the TDoA measurements. These re-
sults confirm that an attacker can precisely time the TDoA at two
receivers while using two separate spoofing devices.
3.3.2 Spoofing Accuracy
To evaluate the location spoofing attack performance, we use five

spoofing devices that transmit signals to five OpenSky sensors as
depicted in Figure 3. Each sensor is assigned with the location of a
different airport in Switzerland. The distance between these loca-
tions measures between 30 and 130km. When spoofing, a ghost air-
craft is flown at a steady altitude of 10, 000m between the two towns
Thun and Solothurn corresponding to a distance of around 35km.
During this time, we transmitted a total of 494 position squitters per
spoofing pipeline of which just over 250 messages were received on
average per sensor. Around one-fourth of all transmitted messages
were received by all five sensors, enabling the multilateration of the

Figure 3: Overview of the multilateration attack setup. A master
node connected to five attacking devices (PC and USRP) controls
the exact time at which the five OpenSky receivers receive the ADS-
B messages for multilateration.

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Planar Distance Error [m]

C
D

F

Cable−based spoofing

Over−the−air spoofing

Real aircraft

Figure 4: Distribution of the multilateration localization error with
multi-device spoofing and messages from real aircraft measure-
ments.

aircraft’s position from these timestamps. The reception rates rep-
resent typical message losses in the real world [35].

As before, we conducted these experiments over cables. To es-
timate the location error in an over-the-air attack, we also spread
the cable-based TDoA distributions by approximately 25%. This
factor accounts for the wider TDoA distribution when the signals
are transmitted over-the-air. We additionally extracted signals from
legitimate aircraft recorded by OpenSky on September 11th, 2015
and identified a subset of 623 position messages that were received
by the same set of five sensors. These sensors observed 66 differ-
ent airplanes during the course of the day which we multilaterate
in order to compare the estimated position with the actual postion
reported in the ADS-B messages.

Figure 4 shows the ECDF of the multilaterated planar distance
error for over-the-air spoofing estimation, cable spoofing and real-
world aircraft. We can see that for a small number of multilater-
ated real aicraft messages, the planar localization error is smaller
than for the spoofed messages. However, for more than 70 per-
cent of the posititions of the real aircraft, the error is larger than
spoofed aircraft. The spoofing accuracy is slightly better over ca-
ble than over-the-air but the difference is not that significant com-
pared to the difference with the real aircraft messages. Over-the-air,
only 90% of the multilaterated results lie within an error radius of
100 m from the actual spoofed positions, whereas the cable-based
measurements produced 95% of multilaterated positions within the
same error radius. This shows that an attacker can use multiple
devices to accurately spoof arbitrary positions in a TDoA multilat-
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eration system and that the error introduced is not larger than the
typical error of multilaterated real aircraft.

4. SPOOFING DETECTION BASED ON
PHYSICAL-LAYER FEATURES

In the previous section, we successfully demonstrated the feasi-
bility of a multi-device location spoofing attack. In this section,
we investigate the use of physical-layer features to distinguish if a
signal originated from a single or multiple transmitters and hence,
detect the multi-device attack in ATC scenarios. Physical-layer fea-
tures are low-level signal characteristics of the received waveform
prior being demodulated.
4.1 Requirements for an ATC IDS

Our intrusion detection system (IDS) is intended to work with
the system constraints of the existing ATC technologies and pro-
cedures. This leads us to the following desired core properties of
such an IDS concerning the data link layer, receiver locations and
its acquisition methods:
No changes to the data link layer: The 1090ES (Mode S) [30]

data-link layer protocol used by ADS-B cannot be modified
easily. Any change to the data link would require the develop-
ment and a deployment of new standards to all aircraft in the
world which could easily take 10-20 years in order to com-
plete. Therefore, the design of an IDS should integrate with
existing message formats and communication protocols and
must not require additional information exchanges. Introduc-
ing cryptographic mechanisms [44, 21] or distance bounding
protocols [9, 11] for attack detection is, therefore, out of scope
in the context of ATC systems.

Known receiver locations: The acquisition hardware for the IDS
is to be collocated with existing multilateration receivers.
These are typically at publicly known locations. Therefore,
a hardness assumption can not be extracted from hidden re-
ceivers and associated properties of attacker channels such as
proposed by previous work [8].

Decentralized acquisition: Acquisition devices are spatially sep-
arated. Therefore, recorded signals need to be sufficiently re-
duced in dimensionality before the extracted information can
be combined into a centralized entity for intrusion detection.

4.2 Feature Selection
Our idea of using physical-layer features is inspired by radio fin-

gerprinting techniques. However, our application of physical-layer
features in this work differs from classical device fingerprinting ap-
proaches such as proposed in the literature [14, 16, 47, 22, 17, 27,
24, 6]. While the goal of classical device fingerprinting is to identify
a specific device from a set of known devices at a single verification
site, we use physical-layer features quite differently. In our context,
physical-layer features are used to compare the signal of a seemingly
single and unknown transmitter received at multiple receivers.

We have identified two challenges that are unique to this scenario.
First, receivers introduce their own device-specific noise into the
measurements of the physical-layer features. Since features col-
lected by multiple receivers must be compared, it is necessary to
identify features which are least affected by the receiver noise. Sec-
ondly, classical wireless device fingerprinting systems operate on
optimal channels with the devices located in a somewhat close prox-
imity to the signal’s source and do not move as fast as to introduce
a significant amount of Doppler shift. In contrast, our system has

to deal with far-away, high-speed transmitter nodes. These proper-
ties render the channel far from optimal and distort the signal before
it arrives at the receivers. We will experience interference, multi-
path propagation and Doppler effects, challenging the extraction of
transmitter-specific features.

From the multitude of possible features, we have selected and
evaluated two physical-layer features: a frequency-based feature of
the modulated signal and a phase-based feature of the signal tran-
sient. We wanted the properties of our features to be universal,
such that all tested devices exhibit the feature and unique, enabling
all tested devices to be distinguished. Furthermore, the features
should be extracted locally without the need for any external data
and should be resilient to disturbances in the channel. Finally, an
attacker should not be able to emulate the feature easily.
4.3 Frequency-based Feature

The idea behind the frequency feature is to take advantage of the
imperfections in the transmitter’s synchronization. In radio devices,
the carrier frequency of the transmitted signal is derived from a lo-
cal oscillator. In practice, it is impossible to perfectly synchronize
the local oscillators of different devices that are separated over large
distance. The clocks need to be synchronized with methods such as
e.g. GPS-disciplined oscillators, which rely on wireless GPS sig-
nals for clock synchronization. Thus, the relative frequency offsets
between different transmitters allow to discriminate whether the sig-
nals at different receivers originated from a single source or from
multiple devices. We extract the harmonic peak frequency from a
received discrete-time signal u through applying a discrete Fourier
transform and maximizing the respective spectrum. The harmonic
peak frequency is extracted as

f up = argmax
f

|{u}(f )|.

While normally applied to a stationary spectrum, this means of
calculating the frequency offset yields the average of spectral contri-
butions at different times for our signals with underlying frequency
drifts. We obtain the harmonic frequency offset of two presumably
identical signals u and v as follows:

Δf (u,v) = f up − f
v
p

Our distance metric between two signals captured at a receiver
pair {i, j} for the frequency offset is defined as

d(i,j) ≝ |Δf (i,j) − Δf (i,j)Rx − Δf (i,j)D |.

This metric accounts for the receiver frequency offset Δf (i,j)Rx as
well as the expected Doppler shift Δf (i,j)D . The Doppler shift is cal-
culated from protocol information where we process the aircraft’s
indicated speed vector and use

fD =
(vr
c
− 1

)

f0

to calculate the signal’s Doppler shift, with vr being the radial ve-
locity of the aircraft relative to the fixed receiver and f0 being the
nominal transmission frequency.

For illustration purposes, Figure 5 shows the distributions of the
medians of the frequency offsets in our datasets with multi-device
spoofing signals and legitimate aircraft (see Section 5.1 for the de-
tails of the experimental setup). Since real aircraft are moving, the
received signals at the sensors experience a Doppler shift which we
compensate by extracting the speed of the aircraft from the ADS-B
messages. As we can see, the signals from real aircraft are located
nearer to an offset of zero, the spoofer’s signal offsets lie further
from zero and experience a much flatter slope. This separation, es-
pecially between the Doppler compensated and the spoofer’s curve
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Figure 5: The CDFs show the medians of the frequency offsets
of different spoofer and aircraft datasets. To the left we have the
Doppler compensated and uncompensated aircraft signals; to the
right the spoofer’s frequency offsets.

highlight the applicability of this feature to discern spoofed signals
originating from different attack devices.

However, we recognize that an attacker might be able to coun-
teract his device’s frequency offset by measuring the offsets him-
self and correct them in software prior to transmitting the spoofing
signals. Additionally, the attacker may try to improve the stabil-
ity and accuracy of the synchronization method and thus reduce his
transmitter’s frequency offsets. Nevertheless, a non-zero frequency
offset is likely to remain given the imperfections in the hardware
components used in the attacker’s radio transmitters.
4.4 Phase-based Feature

Our second feature is based on the signal phase information. The
radio front-end hardware introduces random, short time span phase
variations called signal phase noise that cannot be emulated or com-
pensated in the software during the signal generation. The phase
noise is independent of the synchronization accuracy between
transmitters and therefore remains discriminative evenwhen the fre-
quency offset between two signals is zero.

Before we can work with phase related properties, it is necessary
to extract a phase vector. The extraction process is shown in Fig-
ure 6. We start by extracting the phase from the baseband signal
vector u as

'̃ = tan−1
(

Im(u)
Re(u)

)

.

To prevent distortion, we interpolate the phase vector to hold only
one value for each pulse position. The resulting instantaneous phase
vector ' can be decomposed as:

' = � + � + �̂,

where � denotes the initial phase, � represents the frequency er-
rors and �̂ is the phase noise of the system. After unwrapping the
phase, we calculate a regression curve over the extracted instanta-
neous phase. Using this approach, we are able to circumvent the
need to measure the absolute value for the initial phase and the fre-
quency errors as they are accounted for in the regression. Finally,
the regression residual �̂ is taken to represent the phase noise.

We have found in our experiments that the phase noise in the sig-
nal transient is most discriminative with regards to discerning dif-
ferent transmitters and decided to use the phase noise value of the
first message pulse as the feature. Our observed behavior is con-
sistent with prior studies [41, 42] that the PLLs exhibit transient

Figure 6: Phase extraction process for a sample message. The top
plot reports the signal amplitude, followed by the instantaneous
phase�. The third plot shows the instantaneous phase after unwrap-
ping (blue line) and the corresponding regression (orange). The dif-
ference between the two represents the phase noise and is displayed
in the bottom plot.

behavioural characteristics during the tuning process to the carrier
frequency. Therefore, observing additional pulses of the recorded
signal will not improve our detection of a multi-device spoofing at-
tack. The signals were captured using one sample per pulse. The
phase noise for the first pulse is the first value in the phase noise
vector �̂u. This phase noise is extracted from a discrete-time signal
u.

Figure 7 shows the different distributions of the phase transient
for different transmitter/receiver pairs (see Section 5.1 for details
about the experimental setup). While many pairs exhibit clearly dis-
tinguishable distributions, for some pairs the curves are very sim-
ilar. We noticed that the transmitters with similar phase transient
distributions have consecutive serial numbers, supporting our as-
sumption that this feature is related to the hardware components.

While this feature’s variance is similar across transmitters, the
median of these distributions vary significantly (Figure 7). This
effect leads us to use the median as the basis for our distance metric.
For any given transmitter pair {i, j}, we define the distance metric
as

d(i,j) = |�̂i[1] − �̂j[1]|.

As shown in Figure 8, even though both distributions for the
spoofer and the aircraft’s signals are well separated, they still ex-
hibit an overlapping area. We therefore aggregate this feature’s data
at more than two receivers to extract meaningful results and for the
final distinction between legitimate and spoofing signals.
4.5 Decision Policy

Classification of the received signals is achieved through hypoth-
esis testing. We define two hypotheses:

0 ∶ d(i,j) = 0

1 ∶ d(i,j) > 0,

where 0 denotes the null hypothesis, i.e. signals are legitimate,
while1 indicates that an attack is being launched against the sys-tem. The decision parameter d(i,j) represents the distance metrics
for the frequency and the phase feature, respectively. We conduct
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Figure 7: These CDFs show the distribution of the phase transient
feature for different transmitter, receiver pairs.

Figure 8: These CDFs show the distribution of the phase transient
feature for real and spoofed signals.

the binary hypothesis testing for each sensor pair individually, yield-
ing a 0 for normal operations and a 1 for an attack situation. The
system then performs an OR operation on the results of all receiver
pairs and determines its current state from this result. Therefore, it
is sufficient for our system to raise an alarm if only one receiver pair
detects an ongoing attack.

5. EVALUATION
The first part of this section introduces the experimental setup for

the spoofing detection evaluation. In the second part, we describe
the performance of our intrusion detection scheme.
5.1 Experimental Setup

To evaluate the performance of the frequency- and phase-based
features for attack detection, we rely on an experimental setup with
USRPs as the attacker devices and signal acquisition devices to de-
rive the features. We rely on the experimental spoofing platform
presented in Section 3. The spoofing dataset consists of 12 subsets,
for all possible receiver combinations, with 2, 000 received ADS-
B squitters on average. To acquire real-world signals, we placed

two receiving USRPs equipped with antennas for ADS-B reception
with a separation of 25km between them. These sensors recorded
a total of 17 datasets of ADS-B messages from 17 legitimate air-
craft on June 9th, 2015. Each dataset holds between 71 and 263
messages. The attacker devices and receivers were in both cases
synchronized using the internal GPS-disciplined oscillators. The
signals were sampled at 10Msps.

On the software side, we used a modified version of the gr-air-
modes [26] ADS-B receiver for software-defined radio platforms.
We modified the original program to pass the IQ signal samples
through the whole processing chain. After successful detection and
decoding of an ADS-B squitter, the receiver stores the IQ samples
and the corresponding reception time to disk. For post-processing,
we filtered all signals using a 4 MHz raised cosine band-pass filter
with a roll-off factor of 0.1. Further, we discarded all transponder
signals not adhering to the RTCA spectrum specification detailed
in DO-260B [29].
5.2 Methodology

Our evaluation of the previously described features is conducted
on the collected data, which includes real-world and spoofed trans-
ponder signals. The performance of intrusion detection of the fre-
quency and the phase feature are evaluated separately. We designed
our intrusion detection system in such a way that it requires little
prior information to classify the received signals. For the example
of the phase-based feature, no additional information is required.
However, for the frequency based feature, it is necessary to know
the average of all frequency offsets of a specific receiver pair and
the velocity of the transponder from ADS-B protocol data a priori
for estimating the Doppler shift.
5.3 Metrics

We evaluate the performance of our IDS according to three main
metrics (i) false positive rate, (ii) false negative rate and (iii) de-
cision latency. The false positive rate describes the set of signals,
which originated from a real transponder but were wrongly classi-
fied as being spoofed. We want to keep the false positive rate as
close to zero as possible, as ATC personnel should not be bothered
too much by false alarms. A high false positive rate could have the
effect of indifference towards alerts from the ATC personnel. If an
adversary spoofs aircraft’s signals with the alerts being ignored, our
countermeasure would lose its sense. On the other hand, the false
negative rate describes the set of spoofing signals, that were not de-
tected by our system. Again, this value should be as close to zero
as possible for our IDS to be effective and secure.

The third metric we use to evaluate the performance of our sys-
tem is the decision latency. As it is not practical to base a decision
only on the first message our system requires a number of received
signals at multiple receivers. The ADS-B message rate, the number
of received signals and the number of receivers required contribute
to the decision latency.
5.4 Attack Detection Performance

Figure 9 shows the results for different configurations of the fre-
quency and phase feature. Using the frequency offset, our IDS de-
tects 96% of attacks with zero false positives using the average 30
messages, making use of four receivers. With the same parameters,
the phase feature accomplishes an attack detection rate of 92% with
again zero false positives. Using the average over 10 messages al-
ready skews our results as we encounter false positive classifications
immediately from the beginning. If our IDS only uses one message
for decision making, the false positive rate starts to dominate the
classification results.
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Figure 9: ROC curves for an IDS based on the frequency offset
feature (left column) and on the phase feature (right column).

We observe that increasing the number of receivers is not optimal
in every scenario. Furthermore, the number of receivers does not
have the same effect for both the features. It is the phase feature that
gains most from using multiple receivers. Generally, it can be stated
that a higher receiver number will lower the false negative rate. This
is an effect of our aforementioned decision policy (see Section 4.5)
which is based around the fact that we raise an alarm if at least one
pair of receivers detect an attack. On the other hand, using more
receivers increases the false positive rate. Additionally, increasing
the number of messages accounted for in the decision will lower
the false positive rate. The aforementioned effects are detailed in
Figure 10 where on the left hand side we take a fixed number of
messages (n = 30) and a fixed number of receivers (nrx = 3 for
frequency and nrx = 4 for phase) on the right hand side. The figurealso shows the average error rate we calculated as the mean value
between false positive and false negative rates.

For ideal IDS performance, we extended the parameter ranges to
find the combinations which detected at least 99% of attacks with
zero false positives. We vary the numbers of messages between 1
and 70 and the number of receivers between 2 and 10. As shown
in Figure 9 and Figure 11, the system could not compensate a low
number of messages with a higher number of receivers. We also
observe that the gain from increasing the number of receivers from
3 to 4 has a negligible impact for the frequency feature while the
impact is significant for the phase feature.
5.5 Channel Influence on the Phase Feature

While our attacker model enables the attacker to acquire an arbi-
trarily good channel, he might choose to opt for a non-ideal channel
to distort his transmitter’s hardware effects on the signal. Such a
non-ideal channel might lead to multipath effects, thus distorting
the signal’s phase due to multiple copies arriving at the sensor at
slightly different times. To better understand the channel’s effect

Figure 10: IDS performance for both the frequency offset and phase
transient feature. The left column holds IDS performances for a
fixed number of messages and variable number of receivers, while
the right column shows the effect of varying the number ofmessages
with a constant number of receivers.

Figure 11: Ideal parameter combinations for both features. Ideal
performance thereby refers to zero false positives and a false nega-
tive rate under 1%. Parameter regions consistently yielding ideal
performance are highlighted in dark blue. Regions that contain
some ideal parameter combinations are marked light blue. Marked
red are the minimum parameter combinations for consistent ideal
performance, i.e. Pareto-optimal parameter combinations.

on the phase feature, we have conducted an additional experiment
with one transmitter pair. During these experiments, the channel
was chosen both line-of-sight as well as non-line-of-sight (NLoS).
Figure 12 shows our evaluations regarding the signal’s phase tran-
sient in various channel conditions. Apparently, having a multi-
path environment increases the variance of our feature compared
to an ideal channel. The medians are, however, still distinguish-
able enough to detect multiple transmitters. For the NLoS channel,
the feature is significantly distorted to defeat the attack detection.
While we acknowledge the possibility of an attacker distorting the
phase transient through transmitting over a suboptimal NLoS chan-
nel, we deem the possibility of success very low. It is unlikely for
an attacker to control in which way his signal is distorted over an
NLoS channel, as he would need highly detailed knowledge about
the channel. Additionally, sending over a bad channel works against
the attacker’s primary goal, which is to tightly control the time-of-
arrival of his signal at the receiver.
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Figure 12: Effects of different channel conditions on the phase fea-
ture for the same USRP transmitter pair. The top plot shows the
results for an ideal/cable based channel. The others depict the ef-
fect of the channel both line-of-sight and non-line-of-sight on our
phase feature.

6. DISCUSSION
As shown in Figure 11, there are multiple possible combinations

of the number of receivers and messages that yield optimal IDS per-
formance. Our goal is to find the combination yielding the lowest
decision latency. To determine a decision latency, we need to fur-
ther define the message rate and the message loss factor. According
to [30], an aircraft broadcasts 2 position and velocity messages per
second and 1 identity message every 5 seconds. Taking into account
further messages like priority status, TCAS and eventual emergency
messages, we estimate an average message rate of 5.4messages per
second. The message loss at each receiver is estimated to be 10%.
Using these parameters, we can conclude that for the frequency fea-
ture, using either 8 receivers and 17messages or 7 receivers and 20
messages, will result in a minimal decision latency of 7.7 seconds.
With the phase feature, we obtain a latency of 9.4 seconds with 27
messages received at 6 receivers.

For our IDS’s operation, it is not necessary to always perform ide-
ally in the first place, allowing us to reduce the number of messages
for attack decision and thus reducing decision latency. An aircraft’s
trajectory has such a high message count that we can consider mak-
ing decisions based on tens of messages. This assumption of course
only holds as long, as our system’s false positive decisions are not
temporally clustered but evenly distributed. Therefore, we analyzed
the intervals between two false positive decisions. Our IDS per-
forms very promisingly for the phase feature, never yielding two
consecutive false positive when deciding on a set of 10 messages.
The frequency feature, on the other hand, does not perform as well
as the phase feature. Using more messages for a decision does not
lower the false positive rate that significantly.

While we only presented each feature individually in this paper,
it is of course also possible to combine both features for decision
making. However, we would need to establish a valid reference
for the frequency feature based on known valid aircraft’s signals.
This could be established trough periodically employing the phase

feature to build and refresh this reference set of signals. However,
as we have shown some device’s to exhibit the same phase transient
behaviour, a sophisticated attacker with big enough budget might
theoretically acquire multiple similar devices. Using a large set of
sensors coupled with an attack detection policy, where an alarmwill
be issued for the case that only a subset of sensors determine an
attack state, might defeat the attack through the added complexity
for the attacker when deploying a large number of spoofing devices.
In such a scenario, the attacker would also need to expose himself
more, as his time spent in the proximity of the sensors rises, risking
early exposure by the authorities.

The limitations of our intrusion detection system are that the fre-
quency feature can be influenced by the attacker through measur-
ing his device’s frequency offsets and correcting them in the signal
generation chain. He might also use a more precise synchroniza-
tion method than GPS that will result in smaller frequency offsets
between his transmitters. The phase transient feature can, however,
not be influenced that easily because it is affected by the inherent
noise of the hardware. The attacker has still the possibility to over-
stock on software-defined radios and measure their phase transient
properties, selecting a subset of his stock for the attack. While an at-
tacker might act according to this approach, financial factors might
limit him on acquiring a large enough set of transmitters. The finan-
cial factor is also the reason why we deem attempts to reduce the
noise by using high-end RF equipment such as low-noise arbitrary
waveform generators (AWG) or special-purpose hardware a chal-
lenge for the attacker. Danev et al. [13] have shown that AWGs are
able to replay recorded signals to an extent where fingerprinting sys-
tems can not distinguish between the legitimate transmitter and an
AWG.While high-end AWGsmight be able to produce highly accu-
rate signals with little noise in the transient phase, they are by a fac-
tor of 20 to 100 times more expensive than today’s SDR platforms
and would require a prohibitively high budget on the attacker’s side
since a distributed attack requires at least a couple of such devices.

7. RELATED WORK
Costin [12] and Schäfer [33] take an experimental approach to

assess possible attacks against ADS-B based on protocol semantics
of ADS-B message content. Our work instead focuses on timing
attacks on ADS-B multilateration, a threat model they did not con-
sider. Previous work [20, 3, 28, 38, 9, 21] suggest to use multilater-
ation systems to verify the location data in ADS-B and other attack
scenarios. However, they do not look at distributed attack models
as we do in this work.

Several efforts have been devoted by the research community on
securing multilateration systems. Chen et al. [10] and Du et al. [15]
proposed methods for attack detection based on statistical hypoth-
esis testing, either before [10] or after [15] the localization phase.
However, this approach is based on the assumption that spoofed
TDoA patterns yield statistically significant differences from a sin-
gle (non-spoofed) transmitter, an assumption that is clearly invali-
dated by our experimental results.

Performance evaluations of multilateration in adversarial setups
were conducted in previous work [5, 43]. Therein, the adversary
leverages beamforming to falsify the signal strength at the receivers.
They consider RSS-based localization and study the problem from a
theoretical perspective. In contrast, our work focuses on time-based
multilateration and provides an experimental assessment. The prob-
lem of detecting multiple attackers masquerading as a single legiti-
mate node and injecting spoofed traffic into a wireless network was
also proposed [46], again in the framework of RSS-based, not time-
based localisation.

Using the angle-of-arrival (AoA) to detect spoofers with multi-
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ple or directional antennas [45] is opposite to the goals of the intro-
duction of ADS-B, which is to abolish secondary radar and subse-
quently directional antennas. It would however be possible, to use
the directional antennas of the secondary radar for an AoA system
during the transition period towards fully deployed ADS-B. While
AoA will detect most attackers, it will still fall victim to the most
determined and prepared. Combined with our approach from this
paper, such a system would detect even very determined attackers
that can evade the detection from AoA through adding a second
hurdle.

Tippenhauer et al. [40] have analyzed the requirements to spoof
GPS signals. Although GPS and ADS-B multilateration are both
based on the TDoA principle, these two systems are fundamentally
different: in GPS a single receiver collects TDoA measurements
from multiple transmitters, while the situation is reversed in ADS-
B, where a set of receivers measure the arrival times of signal from a
single transmitter. Therefore, the attack requirements are markedly
different for the two systems.

Transmitter-specific hardware features have been used for device
identification and authentication [14, 16, 47, 22, 17]. Brik et al. [6]
identify wireless devices according to their specific frequency off-
set. Others have looked at frequency-domain correlations [39] as
well as signal phase [18, 42, 41] to identify a transmitting device.
Differently from such previous work, where physical-layer features
were employed for transmitter identification and authentication,
here, we rely on physical-layer features to reveal whether the signal
was transmitted from a single source or instead by multiple (coordi-
nated) devices. Moreover, while previous work has assumed ideal
channels, we have designed features that can be robustly acquired
across the non-ideal channel between a moving aircraft and ground
stations.

8. CONCLUSIONS
This work has shown that a distributed multi-device attacker

model is a realistic threat scenario to TDoAmultilateration systems.
We have shown that using COTS software-defined radios with GPS
synchronization, it is possible to generate spoofing signals with a
sufficient synchronization over large areas such that the localiza-
tion error of the multilateration becomes indistinguishable from the
error of legitimate signals.

Given this result, we have analyzed the usage of physical-layer
features to detect multi-device attacks against wireless multilater-
ation systems. We identified and evaluated a frequency-based and
a phase-based feature which can be used to detect distributed at-
tackers. These features are well suited to detect distributed spoof-
ing attacks in air traffic surveillance scenarios because the attack
detection is (i) purely passive, (ii) does not require any changes to
the legacy data communication protocols, (iii) requires only lim-
ited exchange of information between the sensors, and (iv) works
even when the multilateration sensor locations are known by the
attacker.
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