
Service Discovery in Mobile Ad Hoc Networks: A Field Theoretic Approach

Vincent Lenders∗, Martin May and Bernhard Plattner
Swiss Federal Institute of Technology (ETH Zürich), Switzerland

Email: {lenders, may, plattner}@tik.ee.ethz.ch

Abstract

Service discovery in mobile ad hoc networks is challeng-
ing because of the absence of any central intelligence in the
network. Traditional solutions as used in the Internet are
hence not well suited for mobile ad hoc networks. In this
paper, we present a novel decentralized service discovery
mechanism for ad hoc networks. The basic idea is to dis-
tribute information about available services to the network
neighborhood. We achieve this by using the analogy of an
electrostatic field: A service is modeled by a (positive) point
charge, and service request packets are seen as (negative)
test charges which are attracted by the service instances. In
our approach, we map the physical model to a mobile ad
hoc network in a way where each network element calcu-
lates a potential value and routes service requests towards
the neighbor with the highest potential, hence towards a
service instance. Our approach allows for differentiation
of service instances based on their capacity. We define the
required protocols and methods which we implemented in a
network simulator. Using extensive simulations, we evalu-
ate the performance and robustness of the mechanisms. The
results indicate good performance and convergence even in
highly mobile environments. We believe that this technique
can and should be further exploited, e.g., as a routing pro-
tocol in mobile networks.

1. Introduction

Wireless mobile ad hoc networking has recently gained
a lot of attention in research. A Mobile Ad hoc NETwork
(MANET) represents the ultimate scenario where the net-
work is operated without any fixed infrastructure support
at all. Such networks can be deployed very quickly and
are inexpensive as they do not invoke basic infrastructure
costs. MANET applications cover various areas, such as
military or post-disaster rescue operations, temporary group
collaboration at conferences or lectures, sensor networks,

∗Partly founded by the Swiss National Science Foundation (SNF) under
grant 200021-103578

and many others. Due to the absence of any fixed infras-
tructure support in MANETs, the participating nodes must
provide the basic communication primitives such as rout-
ing, address allocation, name resolution, or service discov-
ery themselves. To provide a certain degree of flexibility,
MANETs must configure and operate automatically with-
out human intervention. Automatic network configuration
is especially difficult in a MANET due to the very dynamic
nature of the system. The dynamism arises from the fact
that nodes may join or leave at any time, that nodes are
expected to move, and that the properties of the wireless
medium are time variant.

Past research efforts for MANETs have primarily fo-
cused on packet routing. In this paper, we focus on the issue
of service discovery which is of fundamental importance.
Network support for service discovery is required when a
client application desires to access a service provided by a
host or server. Applications scenarios for service discovery
in MANETs are manifold:

- In MANETs, some of the connected hosts might have,
in addition to the ad hoc network interface, an exter-
nal connection to the Internet. Such nodes may an-
nounce this ability as a service to the participating ad
hoc nodes. Using service discovery, members of the
MANET are then able to use such a gateway service.

- In an electronic parking system, a service is defined
differently. In such a scenario, implemented as a sen-
sor network, each parking slot is equipped with a sen-
sor. Whenever the slot is not occupied, the sensor an-
nounces a parking service and a guidance system able
to route the car to the parking slot.

- Using their wireless hand-held device or notebook,
participants in collaborative applications or distributed
gaming environments need to discover application or
game servers before participating in a session.

From the possible application scenarios of mobile ad hoc
networks, we derive two major requirements for a service
discovery system specific to MANETs:

1. Optimal service selection. If the same service is of-
fered by multiple instances, “good” service selection
greatly improves the overall system performance. On

one hand, selection of a close service, localizes com-
munication and therefore minimizes inter-node com-
munication and interference. At the same time, it in-
creases the total network capacity. On the other hand,
the quality of service perceived by the client can be
augmented by selecting a “good” service with high ser-
vice capacity. For example, a gateway service attached
to the Internet with a 100 MBit/s link is preferable over
a service with a 1 MBit/s link.

2. Robustness faced to mobility. The network is by nature
very dynamic as nodes are free to join, leave or move at
any time. The system performance must remain stable
when frequent changes in the network topology occur.

Existing service discovery mechanisms are not well suited
for wireless ad hoc networks since they address these is-
sues only partially or not at all. In this paper, we propose a
novel approach for service discovery in wireless mobile ad
hoc networks that fulfills the aforementioned requirements.
Due to the nature of ad hoc networks, our approach is im-
plemented in a totally distributed way, without any central
servers or infrastructure. We assume that every node partic-
ipates in the service discovery process. When a service ap-
pears in the network, it advertises itself. Intermediate nodes
store and exchange information about offered services. The
discovery process is then initiated from a client by send-
ing out a query message which specifies the desired service
type. Such a query is forwarded towards a service instance
matching the service type specified in the query. When a
discovery message arrives at the service instance, the ser-
vice sends back a reply to the client. If multiple service
instances of the same type exist, the service instance dis-
covered by the client is not arbitrary. The discovery system
“selects”, on behalf of the requesting client, a service in-
stance based on two metrics, the network distance (number
of hops) between client and service instance and the capac-
ity of service (CoS). For example, the CoS of an Internet
gateway service may indicate the link capacity of its Inter-
net connection. In the same way, the CoS for a printer can
be used to indicate the print speed. Alternatively, the CoS
can be used to express an average load to perform load bal-
ancing.

The service selection algorithm is distributed and does
not involve interaction with the client. Our approach to se-
lect a service and thus determine how to forward service
queries, is inspired from the physics, specifically of test
charges in an electric field. Any negative test charge moves
along the field’s flux line towards a positive charge. The di-
rection of the flux line is determined by evaluating the gra-
dient of the field. Thus, to draw the analogy, we associate
a query with a negative test charge and the capacity of a
service instance (CoS) with a positive point charge that cre-
ates a field. Figure 1 shows a simple example with two ser-
vice instances and one client. The resulting potential from

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

Q Q

Potential

Service Client Service

query

Figure 1. Service discovery with potentials.

the two charges at the service instances is used to deliver a
query from a client to a service. In this example, since both
services have the same charge, the query is delivered to the
closer service on the left side.

The main contributions of this paper are as follows. We
show how to map the concept of electric fields1 to solve
the service discovery problem in MANETs. The proposed
solution supports service selection based on client-service
distance and capacity of service. We show how to imple-
ment the solution in a distributed and efficient way and ana-
lyze the effect of node mobility on the system performance
with simulations. Note that the proposed service discovery
mechanisms are independent and even work in the absence
of any underlying routing protocol.

The rest of the paper is organized as follows. The next
section describes the details of our novel, field-based ap-
proach to service discovery. Our implementation and its
evaluation is described in Sections 3 and 4. We then de-
scribe related work in Section 5 and conclude the paper in
Section 6.

2. Service Discovery with Potentials

In our approach, scalar fields are defined on the network
over which service queries are forwarded towards service
instances. A scalar field is analogous to a potential ϕ in
electrostatics resulting from electrical point charges. The
potentials of point charges define a distribution with max-
ima at the point charges. Analogously, we consider the ca-
pacity of service (CoS) as a point charge Q, defining a scalar
field on the network with peaks at nodes hosting service in-
stances. Figure 2 depicts an example potential field com-
prising ten service instances (charges). The potential dis-
tribution results from discrete values defined at the network
nodes.

The charges that contribute to a potential must be of the
same service type. For example, printers contribute to the
potential ϕ(1) of service-type=printer. However, a cam-
era service contributes to the potential ϕ(2) that belongs to

1Throughout the rest of this paper, we always consider the potential
resulting from point charges. The potential can be directly calculated from
the electric field and vice versa.

x y

ϕ

Figure 2. Service potential.

service-type=camera. As a consequence, multiple poten-
tials are defined and co-exist on the network. When a client
searches for a service, it specifies in the request the desired
service type. The query is routed to a service instance based
on the potential of that service type. Throughout the rest of
this paper, we consider only one service potential and use ϕ
to denote the potential of that service type.

2.1. Potentials

Consider a service instance at node nj with a charge Qj .
The potential at any node n resulting from this charge is
defined 2 as

ϕj(n) = c · Qj

dist(n, nj)
(1)

where c is a constant and dist(n, nj) is the distance between
node n and nj . In physics, the distance between two nodes
is defined as a geometric distance in meters. In a network
however, the distance between two nodes is often reflected
by the number of hops between them. Therefore, we define
the potential as follows

ϕj(n) =
Qj

| n − nj | (2)

where | n−nj | is the shortest distance in hops from node n
to nj . For simplicity, we set the constant to c = 1 as it does
not impact the discovery decisions. Note that in principle,
other distance metrics for dist(n, nj) could be used includ-
ing the transmission delay, link quality, etc. Throughout the
rest of this paper, we use the shortest distance in hops for
dist(n, nj) as defined in Equation (2).

Now consider N service instances of the same type (for
example N printers). The resulting potential is calculated
as

ϕ(n) =
N∑

j=1

ϕj(n) =
N∑

j=1

Qj

| n − nj | (3)

2In analogy to physics, the electrical potential at position �r which re-

lates to a point charge Qj located at �rj is ϕj(�r) = 1
4πε

Qj

|�r− �rj | . Note that

this function is continuous whereas in our definition, the potential function
has discrete values at the network nodes.

which is simply a linear superposition of all potential terms.
Note that the resulting potential value at nodes with a ser-
vice instance is ϕ → ∞.

2.2. Query Forwarding

With the use of this potential function, a service query
packet is forwarded from a client to a service analogous to
a test charge. The main difference from physics is that a
charge moves along any path in an electric field, whereas
query packets only move along the network links. In our
approach, all Qs are positive. Thus, a negative test charge
follows the direction of the steepest potential ascent. As a
result, a node x forwards a query packet to its neighbor yi

that has the highest potential among its neighbors:

next hop(x) = yi : ϕ(yi) ≥ ϕ(yk) ∧ ϕ(yi) > ϕ(x)
∀yk ∈ NB(x), yk �= yi (4)

where NB(x) is the set of neighbors from node x. In
cases where multiple neighbors of x have the same maxi-
mum potential value, the next hop is chosen arbitrarily. A
service query packet has reached a service instance (its des-
tination) when it arrives at a node with a potential value of
ϕ → ∞. If the potential function is monotonically increas-
ing, query packets are guaranteed to eventually reach ser-
vice instances. However, due to the constraint in our model
that packets can travel only over links between nodes and
not in any direction as in physics, it is possible that the po-
tential distribution shows a local maximum at a node which
does not provide a service:

ϕ(x) ≥ ϕ(yk) ∀yk ∈ NB(x) (5)

Note, that such local maxima emerge very rarely and only
with specific topologies (for example star topologies with
a large number of service instances at the edges). In all
experiments we conducted, using random network topolo-
gies with random node motion, we never experienced local
maxima in the potential distribution. To address the prob-
lem of local maxima, we propose the following solution. If
ever a query reaches a node with a local maxima, the query
changes the forwarding strategy from forwarding based on
potential values and enforce “greedy” forwarding towards
to closest service. Hence, the query will arrive at the closest
service node.

2.3. Illustrative Examples

We now illustrate, based on simple examples, the basic
properties of our approach for service discovery. We start
looking at a potential which is defined by a single service
instance (charge). We show that in this case, a client query
is forwarded to the service over the shortest path. When

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

Q

ϕ = ∞

ϕ = Q

ϕ = Q

ϕ = Q
2

ϕ = Q
2

S C

Figure 3. One service instance.

two service instances define the potential field, we distin-
guish two cases: (i) If both charges are equal, the query
message is delivered on the shortest path to the closest ser-
vice; and (ii) if the charge values are different, there is a
tradeoff between proximity and intensity. We show that,
with multiple service instances, service query packets are
directed towards regions in the network with high service
density.

2.3.1. Potential Function Resulting from a Single Charge

Consider a scenario with only one service instance S (see
Figure 3). A charge Q is assigned to S. Client C sends
a service query packet and we illustrate the traversed path
(marked with arrows) of this packet. Note that there are two
paths from C to S with a length of two and three hops. To
calculate the potential value at each node, we must first de-
termine the distance from any node to S. Using this distance
and Equation (3), we derive the potential value at each node
as given in Figure 3. The potential at node S is ϕ → ∞.
The potential of node C is ϕ = Q

2 because the shortest path
from C to S is two hops. According to Equation (4), a node
which forwards a query packet, forwards it to the neighbor
node with the highest potential value. In this case, node C
has two neighbors with potential ϕ = Q and ϕ = Q

2 , re-
spectively. The query packet is therefore forwarded to the
node with potential ϕ = Q. Next, the packet is forwarded
to S since it has the highest potential value ϕ → ∞. S is
the final destination, namely the service instance. Note that
the service query packet is forwarded to the service along
the shortest path. Generalizing this observation, we claim
the following:

Theorem 1 If just one service instance of a given type ex-
ists, a service query packet from any client node in the net-
work is directed to the service node along the shortest path.

Proof: Let nc be a client node that sends a service query
packet to a service node ns. Then, assume that node nx is
the next hop from the shortest path of nc to ns. Consider a
neighbor node ny of nc such that nx �= ny. Since node nx

is on the shortest path we claim that

| ns − nc |= 1+ | ns − nx |≤ 1+ | ns − ny | (6)

This implies that | ns − nx |≤| ns − ny |. If the service
at node ns is the only service, the potential at node nx is

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

Q Q

ϕ = ∞ϕ = ∞ ϕ = 11
4
Q ϕ = 5

6
Q ϕ = 5

6
Q ϕ = 11

4
Q

S1 C S2

(a) Same charge at S1 and S2

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

4QQ

ϕ = 15
6
Q ϕ = ∞ϕ = 41

4
Qϕ = 21

3
Qϕ = 2Qϕ = ∞

S1 C S2

(b) Different charge at S1 and S2

Figure 4. Two service instances.

ϕ(nx) = Q
|ns−nx| and ϕ(ny) = Q

|ns−ny| at node ny. There-
fore, ϕ(nx) ≥ ϕ(ny). According to the forwarding rule
(Equation (4)), a service query packet from nc is forwarded
to the node with the highest potential. Therefore, the packet
is forwarded to nx which is the next hop on the shortest path
to ns. �

2.3.2. Potential Function Resulting from two Charges

In general, there are many reasons for a client to select a
close service instance. For example, localized communi-
cation generally reduces end-to-end delays or the probabil-
ity of route failure due to mobility. It also reduces inter-
node interference, which in turn increases network capacity.
However, in the presence of more distant services with high
CoS, it is, to some extent, reasonable to access more distant
service instances to increase the quality of service perceived
by a client. For example, consider two Internet gateway ser-
vices in a MANET with a 100KBit/s and 100MBit/s
connection link to the Internet. Unless a client is really
much closer to the 100KBit/s service, it is reasonable to
use the much faster 100MBit/s service to access the Inter-
net. The next two scenarios show the properties of service
discovery when exactly two service instances of the same
type exist.

In Figure 4(a), a client node C is two hops away from
S1 and three hops away from S2. If S1 and S2 both have a
charge Q, we calculate the potential at all nodes using equa-
tion (3) as given in the picture. For example, the potential
at C is equal to ϕ = Q

2 + Q
3 = 5

6Q. Client C sends a
service query packet to the left neighbor since its potential
ϕ = 1 1

4Q is larger than the potential ϕ = 5
6Q of the right

neighbor. Henceforth, C discovers service S1. Note that
in this case, C discovers service S1 because it is closer, in
terms of hops, than service S2.

Now consider the scenario illustrated in Figure 4(b). The
only difference is that a charge of 4Q is assigned to service

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

Q
Q

Q Q

Q

C

ϕ = ∞
ϕ = ∞

S2

S1

ϕ = ∞

S3

ϕ = ∞

S4

ϕ = ∞

S5ϕ = 3 1
12Q

ϕ = 2 5
12Q

ϕ = 21
6
Q

Figure 5. Multiple service instances.

S2. The potential values at all nodes change from the previ-
ous scenario. The potential at C is now equal to ϕ = 1 5

6Q.
However, in this case, the potential ϕ = 2 1

3Q of the right
neighbor is higher than the potential ϕ = 2Q of the left
neighbor. Therefore, a service query packet is sent via the
right neighbor to service S2. Note that this time, service
S2 is discovered which is more distant (in number of hops)
than service S1 because its charge intensity is higher.

We conclude that when two service instances have the
same charge, a client discovers the service instance which is
closest to him. However, when the service instances use dif-
ferent charges, the tradeoff between proximity and charge
intensity has to be handled during the discovery process.
Recall that the charge is a value to quantify the capacity of
service (CoS) as for example, the print speed or link capac-
ity. Thus, applying field theory to service discovery allows
to exploit the natural proximity/intensity tradeoff resulting
from the potential to select the appropriate service instance.
We evaluate this tradeoff in more detail in Section 4.

2.3.3. Potential Resulting from Multiple Charges

An example scenario with five services (S1 - S5) of the same
type is illustrated in Figure 5. An identical charge Q is as-
signed to all services. A service query packet from client C
is sent to its right neighbor with potential ϕ = 3 1

12Q which
is larger than the potential ϕ = 2 5

12Q of its left neighbor.
The right neighbor of C then forwards the packet to either
S3 or S4 as drawn in the picture because they both have an
infinite potential value.

In this example, client C is equidistant from S2, S3, and
S4 which all have the same CoS. If we based our decision
on simple distance and capacity metrics instead of using
potentials to forward service queries, all three service in-
stances would be considered ”equally” optimal. However,
with our approach, a query message from C will always
be forwarded to S3 or S4. This is due to the summation
of CoS and the consequential higher potential in the direc-
tion of the ”service instance cloud”. This example illus-
trates the benefit of using our potential function to forward
queries. Assume that C sends a query packet towards S2.
If S2 moves away or just disappears before the field val-
ues can be updated by the protocol, the query packet will
be dropped at the relaying node. Now assume that C sends

its query towards S3 which in turn disappears. An inter-
mediate node between C and S3 is now able to react and
forward the query to an alternate node which in this case is
S4 and successfully deliver the query. In other words, query
packets are directed to network spots with large charge den-
sity. A large charge density may be the result of many small
charges or few high charges close together. More generally,
we claim that our approach adds a probability of successful
service delivery. Hence, we increase the robustness of the
system.

3. Implementation

In this section, we describe our implementation of the
potential-based approach for service discovery in mobile
networks. We present a mechanism to establish potential
values at nodes and how to react to failures due to node
mobility. We also describe an optimization that signifi-
cantly reduces the control overhead of the protocol and we
show that this is achieved without sacrificing the service
discovery performance. The discovery mechanism is en-
tirely based on local communication and does not rely on
any underlying routing protocol. The only communication
service required from the network layer, is the ability to
send a packet to one (one hop unicast) or all local neigh-
bors (broadcast). We assume that all nodes in the network
are mobile and that all wireless links are bi-directional, i.e.
if node s is able to transmit to node r, then node r can also
transmit to node s.

3.1. General Overview

Our implementation is based on the soft state princi-
ple. We consider it unrealistic to expect service instances
to de-register their profiles in a wireless ad hoc network.
Service instances periodically advertise the service type or
types they offer. These advertisements are flooded through
the network within a limited scope. Each node temporar-
ily stores recently received advertisements and calculates
its potential value for each service type. After a timeout,
advertisements simply expire if they are not updated. In ad-
dition, neighboring nodes periodically exchange their local
potential values for all service types.

When a client searches for a service, it creates a service
query message. This query message contains the service
type of the desired service. We assume that clients and ser-
vices share a common ontology to express the service types.
Intermediate nodes have to relay this query message accord-
ing to their potential value and the value of their neigh-
bors (see Equation (4)). If a local maximum is detected
(Equation (5)), a query is forwarded to the closest service
instance. When a service instance receives a query message
with the service type it provides, it replies to the client with

a query reply message. The discovery process is terminated
as soon as the client receives the query reply message which
contains the network address of the service.

3.2. Protocol Messages

Four different message types are required to 1) advertise
service profiles, to 2) exchange potential information be-
tween neighbors, to 3) send service queries, and to 4) reply
to those queries.

3.2.1. Service Advertisements

Service instances need to periodically advertise the service
they offer. A service advertisement contains the following
items:

- Service Type: This item defines the type of service
(e.g. printer).

- CoS: The capacity of service which is analogous to
the charge Q. Therefore, all CoS values are positive.
In practice, a common quantification guideline for the
CoS will be required per service type. For example,
we can define the Internet gateway service capacity
as follows. A service with a 100KBit/s connection
has a CoS of 2 and a Internet gateway service with
10MBit/s a CoS of 15. It is also possible to adjust
the CoS value depending on the momentary load of a
service. A 10 MBit/s gateway could start decreasing its
CoS when advertising its service as soon as its traffic
load increases.

- Hop Count: The hop count field is initially set to zero
by the service. It is incremented by one at each hop
when forwarded. Thus, it is the distance from the re-
ceiving node to the service (in hops), as used in Equa-
tion (3) to calculate the potential of nodes.

- Service ID: An identifier which uniquely identifies the
service instance. This ID is generated locally. Dif-
ferent mechanisms exist to achieve global uniqueness
using for example part of the MAC address [1] or a
time value [2].

- Sequence Number: A number which is incremented
each time the service instance re-advertises the service
it provides. This item is required to detect if the adver-
tisement is new, obsolete, or is a duplicate which has
been delivered over an alternate path.

- Maximum Advertisement Lifetime: A value set by the
service which specifies when the advertisement ex-
pires. When an advertisement expires, its contribution
to the potential must be removed.

- TTL: This value is set by the service provider to limit
the flooding scope of an advertisement.

The way a node handles an incoming advertisement is
pictured in Figure 6. This algorithm is required to deter-
mine if an advertisement is new, an update, or obsolete

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

DROP

ϕ = ϕ− ϕ = ϕ+seqnew =

hopsnew ≥

hopsnew <ADV

ID is unknown

ID is

known

STORE

FWD
&

seqnew > seqstored

seqstored

seqnew < seqstored hopsstored

hopsstored
CoSstored

hopsstored

CoSnew

hopsnew

Figure 6. Advertisement handling.

and consequently, adjust the potential value of the receiv-
ing node. When a node receives an advertisement, it first
checks the Service ID to determine if a previous advertise-
ment from the same originator has been received. If not,
the advertisement is coming from a new service instance.
In this case, the potential value for the advertised Service
Type is created, the advertisement is stored, and then for-
warded as a broadcast message to all neighbors. However,
if a stored advertisement exists for that Service ID, the node
must further look at the sequence number included in the
advertisement. If the sequence number in the received ad-
vertisement (seqnew) is smaller than the sequence number
from the stored advertisement (seqstored), the received ad-
vertisement is obsolete and can be dropped. If seqnew is
equal to seqstored, the new advertisement is identical to the
stored advertisement but must have travelled over an alter-
nate path. The rule is to keep the advertisement which has
travelled over the shortest path. Therefore, the packet is
dropped if the Hop Count field of the new advertisement
(hopsnew) is larger than or equal to the Hop Count from the
stored advertisement (hopsstored). If however, hopsnew is
smaller than hopsstored or seqnew is larger than seqstored,
the contribution of the stored advertisement is subtracted,
and the contribution of the new advertisement is added to
the potential value. Then, the new advertisement replaces
the stored advertisement and is forwarded.

3.2.2. Local Exchange of Potential Values

Neighbors periodically exchange information about their
local potential values for the different service types. These
broadcast packets have two purposes. First, these packets
are used as “hello”-messages to indicate the current neigh-
borhood nodes; thus, if a node fails to receive a packet from
a neighbor for a predefined amount of time, the neighbor
is assumed to be gone. Second, these packets are used to
exchange local potential values of the known service types
with the neighbor nodes. A node always knows the poten-
tial values of all neighbors as required to forward queries.

3.2.3. Service Queries

A client that searches for a service of a specific type cre-
ates a service query message. Such service query messages
contain the following fields.

- Service Type: The service type that a client is search-
ing for.

- Message ID: The message ID serves to associate a re-
ply message from a service with a request sent by a
client.

- Requester Address: The network address of the client.
- Forwarding Mode: This field is used to specify

whether the query is forwarded based on potential val-
ues or on proximity. In the latter case, the query is for-
warded towards the closest service instance. The clos-
est service instance is simply determined by compar-
ing the Hop Count values from the recently received
service advertisements that every node must store to
calculate its own potential value.

- TTL: The time-to-live field is a hop count initially set
by the client. It is reduced at each hop by one until it
reaches zero. In that case, the query is not further for-
warded. This field can be used by the client to restrict
its discovery range and serves also to prevent queries
to be caught in a loop (short-lived loops can only occur
during the protocol update phase of potential values).

3.2.4. Query Replies

Upon reception of a service query, a service instance must
reply to the client with a query reply. This query reply con-
tains the actual network address of the service and a descrip-
tion field which is used to give additional information about
the service to the client.

- Service Type: The service type of the service which
replied to the query.

- Message ID: The ID from the query reply message is
the same as the corresponding query message.

- Service Address: The network address of the service
instance.

- Description: Additional information about the service.
For example, the port number at which the service pro-
cess is listening can be specified here.

A query reply is routed back to the client over the same
path as the service query.

3.3. Handling Node Mobility and Failures

Nodes determine connectivity by listening for the pe-
riodic potential value update broadcast packets from their
neighbors. If a node has not received an update packet from
a neighbor for some timeout value, it assumes that the link
to the neighbor is lost and removes this neighbor from its
table. In addition, nodes detect if neighbors moved away

or disappeared when sending unicast packets. With IEEE
802.11 [3], a node that moved away can be detected with
an appropriate link layer notification (in the absence of a
link layer ACK or failure to get a CTS after sending RTS).
For example, when a node forwards a service query, it tries
to forward the query to the neighbor with the highest po-
tential. However, if this neighbor has disappeared, a noti-
fication from the link layer is triggered. In such cases, the
node removes the neighbor with the highest potential from
its neighbor list and retransmits the query to the neighbor
with the next highest potential value.

Due to mobility, it is possible that the network becomes
partitioned. In this case, nodes gradually delete advertise-
ments which timeout over time. If two network partitions
merge together, services from one partition will become vis-
ible to the other partition as soon as they re-advertise their
service type.

3.4. Reducing Flooding of Advertisements

In our implementation, service providers must broad-
cast advertisements periodically because this information is
stored in soft state. Since these advertisements are flooded,
one can argue that scalability is an issue. We therefore de-
scribe a method specific to our approach to significantly re-
duce overhead traffic. Other methods to reduce flooding
overhead, such as selective flooding (e.g. Multipoint relay-
ing [4]), could also be considered to further improve the
performance. However, we consider this as an orthogonal
research issue and do not further put additional efforts in
this direction to improve the performance.

The technique to reduce flooding of advertisements we
propose consists of caching and aggregating advertisements
before relaying them. The first time a node receives an ad-
vertisement with a service type it has not seen before, it adds
an entry to the service table and directly forwards the adver-
tisements to its neighbors. However, when a node receives
an advertisement with a service type it already knows, it is
not mandatory to directly forward the advertisement since
a potential is already defined on the network for this ser-
vice type. Hence, the node may cache the advertisement
for a while. During that time, the node collects additional
advertisements from other services and then forwards the
collected advertisements together in one single message.
With this technique, the total number of advertisement mes-
sages can significantly be reduced. Nonetheless, the dis-
covery performance is not degraded too much (see Section
4.5) since advertisements are only delayed for existing ser-
vice types. Thus, when a client sends a request during the
time an advertisement is cached at an intermediate node, the
query still reaches a service.

4. Evaluation

In this section, we evaluate the performance of our im-
plementation with a network simulator. Three main aspects
are evaluated. We look at the performance and convergence
with respect to mobility, the behavior of discovery when
varying the CoS values at different service instances, and
the control traffic overhead caused by the discovery proto-
col.

4.1. Simulation Model

We use GloMoSim [5] as network simulator. At the
MAC layer, we use the distributed coordination function
(DCF) of the IEEE 802.11 [3] standard . The access scheme
is Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA). The 802.11 DCF uses Request-to-send (RTS)
and Clear-to-send (CTS) control packets for unicast data
transmission to neighboring nodes. We use a free space
propagation model with a threshold cutoff for the experi-
ments. The radio propagation range for each node is set to
250 meters and the channel capacity has a nominal bit-rate
of 2 Mb/s. We use the random waypoint model [6] as the
mobility model: At the beginning of each simulation, nodes
are placed randomly in a rectangular area. Nodes start mov-
ing with a randomly chosen speed between 0-20 m/s to a
random destination. Once the destination is reached, the
node waits for a pause time before another random destina-
tion is chosen. Note that with the random topologies used
in the simulations, we never observed local maxima in the
potential distribution. Thus, all query packets are always
forwarded based on the steepest ascent of the potential and
not based on proximity.

4.2. Simulation Parameters

The simulation duration for all experiments is set to 1000
seconds. At least twenty runs are performed for each point
in the graph and the results of all runs are averaged together
to produce the resulting graphs. The network size is limited
to 100 nodes on a rectangular (1500m x 1300m) topology.
According to our experience, we set the protocol parame-
ters as follows: Service advertisements are broadcast ev-
ery 5 seconds and have a lifetime of 21 seconds (somewhat
more than four times the broadcast interval). If the flood-
ing reduction technique is used, an advertisement is cached
between 0 seconds and 5 seconds (depending on the arrival
time) before forwarding. Neighbors periodically exchange
their potential values every 5 seconds with broadcast pack-
ets.

4.3. Effects of Node Motion

Two key performance metrics are evaluated to assess the
effects of node mobility and to show that the algorithm con-

 90

 92

 94

 96

 98

 100

 0 200 400 600 800 1000

D
is

co
ve

ry
 S

uc
ce

ss
 [

%
]

Pause Time [s]

5 service instances
10 service instances
15 service instances

(a) Discovery success

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 200 400 600 800 1000

C
on

tr
ol

 T
ra

ff
ic

 O
ve

rh
ea

d
pe

r
N

od
e

[K
B

/s
]

Pause Time [s]

5 service instances
10 service instances
15 service instances

(b) Overhead

Figure 7. Effects of node mobility

verges when nodes are moving. The discovery success is
the ratio of service query packets that arrive at any service
instance to the total number of query packets sent by all
clients. The control traffic overhead is measured as the
average sending rate of control traffic per node. Control
overhead traffic encompasses all service advertisements and
the periodic messages to exchange potential values between
neighbors. With this definition, the control overhead traf-
fic is purely pro-active and therefore, independent of client
requests. We do not account the service query and reply
messages in the control overhead which depends on the
search activity of clients. These messages are not critical
to the scalability of the system since they are unicast and
not flooded.

The discovery success is a very important metric as it de-
termines if a client discovers a service or not. The discov-
ery success is plotted in Figure 7(a) with changing pause
time. For this experiment we placed 5, 10, and 15 service
instances of the same type on different nodes. Ten clients
are constantly sending service request packets at a rate of
four packets per second (This rate is much higher than we
might expect in practice. We stress the network on pur-
pose to capture the discovery performance at various mo-
ments when nodes are moving with high speed.). We con-
clude that for higher pause times (low mobility), the dis-
covery success is almost perfect (> 99%). For lower pause
times (high mobility), the performance remains quite sta-
ble above around 95%. Note that the discovery success im-
proves when the number of services instances increases be-
cause clients and services tend to get closer on average. We
conclude that the algorithm converges even for high node
mobility (vmax = 20m/s).

The control overhead traffic rate per node is plotted in
Figure 7(b). For this experiment, we used the flooding re-
duction technique as proposed in Section 3.4. We will show
the control overhead without this technique later (Section
4.5). The overhead is almost independent of the node mo-
bility because control traffic is pro-active. However, the
control overhead traffic rate depends linearly on the num-

 0

 20

 40

 60

 80

 100

1:1 1:2 1:5 1:10 1:20 1:30

D
is

co
ve

ry
 S

uc
ce

ss
 [

%
]

Charge Ratio

red
blue

Figure 8. Effects of different CoS values.

ber of service instances.

4.4. CoS-Distance Tradeoff

One of the interesting aspects of using field theory for
doing service discovery, is the implicit tradeoff between
distance and CoS for service selection. A close service in-
stance is discovered by a client unless a better (higher CoS)
service is available. To explore this behavior, we analyze
our approach with different CoS values assigned to the ser-
vice instances. The experiment was conducted without node
mobility, using a static network where the nodes are placed
randomly in the simulation area. We then divide the set
of services in a simulation in two classes, the red services
and blue services. Both, the red and blue services are of
the same service type but have different charges (CoS). The
charge value at each service is constant over the whole sim-
ulation.

The discovery success is plotted in Figure 8 for different
charge ratios between the red and blue services. A ratio of
1 : 1 means that the red and blue services have the same
charge, whereas a ratio of 1 : 5 means that the charge of a
red service is 5 times higher than the charge of a blue ser-
vice. When the charge ratio is 1 : 1, we see as expected that
the service discovery queries are evenly distributed to both
classes. For a charge ratio of 1 : 2, 57% of client queries
during the simulation arrive at red services and 43% of the
queries at blue services. When further increasing the charge
ratio to 1 : 30, the red services are discovered 74% of the
time compared to only 26% for the blue services. Further
intensifying the charge ratio does not much impact the dis-
tribution any more and we therefore conclude the follow-
ing. When the charge ratio is 1 : 1, clients discover ser-
vices which are very close independent of their color. As
the charge ratio increases, discovery packets start to drift in
the direction of red services as the potential gradient gets
steeper in that direction. Thus, a discovery packet can be
forwarded to a red service even if a blue service is closer.
Note that the charge ratio does not influence query packets
from clients which are 1 hop away from a service instance
because the potential value at a service is very large (infi-
nite) and therefore, this service instance is always chosen as
a next hop.

services flood reduced
5 94.68% 94.61%
10 97.01% 96.91%
15 97.63% 97.61%

Table 1. Discovery success with (reduced)
and without (flood) reduction technique.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

5 10 15

C
on

tr
ol

 O
ve

rh
ea

d
pe

r
N

od
e

[K
B

/s
]

Services

flood
reduced

(a) Average sending rate of
control packets

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

5 10 15

C
on

tr
ol

 O
ve

rh
ea

d
pe

r
N

od
e

[p
ac

ke
ts

/s
]

Services

flood
reduced

(b) Average number of control
packets sent

Figure 10. Control overhead per node.

The distance distribution between clients and discovered
services is plotted for three different charge ratios in Figure
9. When the charge ratio is 1 : 1 (Figure 9(a)), the distribu-
tion for the blue and red services is quasi identical (the red
and blue curves are expected to converge when using an in-
finite number of runs). It is interesting to see the distribution
behavior when increasing the charge ratio. In Figure 9(b),
the distance distribution is plotted for a charge ratio of 1 : 5.
Blue services tend to only get discovered by close clients.
This effect is even more pronounced when the charge ratio
is increased to 1 : 30 (see Figure 9(c)). We conclude that
CoS is an effective mean to differentiate service instances.

4.5. Effects of Overhead Reduction Technique

We next investigate how much control overhead is saved
when using the proposed flooding reduction technique (see
Section 3.4). To determine how effective our optimization
is, we first compare the discovery success with and with-
out optimization for 5, 10, and 15 service instances and
very high node mobility (pause time = 0 seconds, vmax =
20m/s). Then, we compare how much control overhead is
caused with both approaches.

Table 1 shows the discovery success for different ser-
vice numbers. In the different scenarios, we observe only
a very small, acceptable performance loss of ≤ 0.1%. We
now look at the effective control overhead gain with our re-
duction technique. In Figure 10(a), we see that up to 54%
of the total traffic load per node was reduced. In addition
to the average sending rate of control traffic per node, we
also measured the average number of control packets sent

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8
D

el
iv

er
ed

 Q
ue

ri
es

 [
%

]
Distance [hops]

blue
red

(a) Charge ratio 1:1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8

D
el

iv
er

ed
 Q

ue
ri

es
 [

%
]

Distance [hops]

blue
red

(b) Charge ratio 1:5

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8

D
el

iv
er

ed
 Q

ue
ri

es
 [

%
]

Distance [hops]

blue
red

(c) Charge ratio 1:30

Figure 9. The distribution of the distance between client and discovered service

per second at each node. The results are shown in Figure
10(b). The number of control packets that were sent are
reduced approximately by a factor of 5 (for 5 services) to
a factor of 14 (for 15 services). We further observe that,
using the flooding reduction technique, the number of con-
trol packets does not increase with the number of services.
This is because advertisement packets from different ser-
vice instances can be combined into a single advertisement
packet.

5. Related Work

In this paper, we proposed the novel idea of using field
theory to do service discovery in wireless ad hoc networks.
The idea of using potentials for routing in the Internet has
been proposed in [7]. Our approach mainly differentiates
from this paper in the way potentials are used. In their ap-
proach, a unique potential is associated for all possible des-
tinations in the network. However, we assign a potential to
a service type. Therefore, our potential function might have
more than one maximum/minimum. Furthermore, we apply
the idea of potentials to dynamic networks such as wireless
ad hoc networks whereas the authors of [7] mostly target
static environments where the topology rarely changes.

Sun’s Jini [2], Microsoft’s UPnP [8] or IETF Service Lo-
cation Protocol [9] have been proposed as service discovery
standards. These systems were not designed for wireless
mobile ad hoc networks and are therefore, not suited for
dynamic and infrastructure-less networks.

Our approach is comparable to the Intentional Naming
System (INS) as proposed in [10]. In that approach, client
requests for a service are directly routed towards a match-
ing service instance without an intermediate lookup to dis-
cover its address. To route these requests, a resolver net-
work of dedicated INS resolvers is required which might
not be available in an ad hoc network. However, it is imag-
inable to extend the INS approach and for example, delegate
the task of INS resolver to each node or at least a subset of
the participating nodes. The main difference between our

approach and INS is how service instances with identical
service type are discovered. We use a tradeoff between net-
work proximity from a client and service capacity. This
issue is, by design, not addressed in INS.

Kozat and Tassiulas [11] proposed a service discovery
mechanism targeted at mobile ad hoc networks. A vir-
tual backbone is constructed dynamically, assuring that all
nodes are part of this backbone or at least one hop away.
Here again, the service discovery system does not provide
mechanisms for service selection when multiple service in-
stances of the same type coexist. Konark [12] is a mid-
dleware designed to support service discovery and delivery
in ad hoc networks. Services are expressed using XML.
The service delivery itself is based on SOAP. Unlike our ap-
proach, Konark requires a multicast protocol for the actual
discovery process.

Our approach can be viewed as a form of a publish / sub-
scribe system. In a publish / subscribe system (e.g. TIB
/ RENDEZVOUS [13]), processes can subscribe to mes-
sages containing information on specific subjects, while
other processes produce (i.e. publish) such messages. In
our approach, the clients would publish requests while the
service providers subscribe to those. The publish/subscribe
systems so far have been researched and developed mostly
in fixed networks. Our approach takes full advantage of
the broadcast nature of wireless radio where traditional pub-
lish/subscribe systems are often built as overlays over IP.

Similar concepts have been proposed for sensor net-
works. For example, Estrin et al. proposed Directed Dif-
fusion [14]. Data packets follow application-specific gradi-
ents to reach their destinations. These approaches are tar-
geted at applications for collecting sensor data and is not
very well suited for service discovery.

An alternative methodology to do service discovery has
been proposed by Koodli and Perkins in [15]. The basic idea
is to add service information in route request messages from
on-demand ad hoc routing protocols such as AODV [16].
A drawback from this approach is that each client request
generates a message which is flooded in the network.

6. Conclusions

This paper defines a novel approach towards efficient and
robust service discovery in mobile ad hoc networks. As
such, electric field based service discovery uses a simple
mechanism to find the best route to the closest service in-
stance: at each node, the request is routed towards the steep-
est gradient until it reaches the service instance. We have
shown that the algorithm is stable, even when conditions are
highly dynamic. In addition, we examined modifications of
the algorithm to reduce control overhead without degrada-
tion of performance. The major advantage of this approach
however, is its simplicity and clarity in design. We believe
that our method to perform service discovery can easily be
adapted to be used for additional tasks. The first applica-
tion that comes in mind is packet routing in MANETs. In-
stead of forwarding requests to service instances only, the
same mechanism can be used to establish communication
between two devices as long as they are uniquely identified
in the network. Another valuable property of this approach
is its independence of the underlying network protocol. In-
deed, it is not only independent, it works even in the absence
of any underlying routing protocol.

In a next step, we will examine the impact of different
distance functions (dist() from Equation 1). The reach of
each individual service instance gets smaller when using
steeper distance functions. For the future, we also plan to
enrich the design by assigning negative charges to clients.
Thus, the position of clients will also influence the distri-
bution of the service fields. This can be used to perform
load balancing in the system. I.e., since clients are using
negative charges, the potential of a service instance is re-
duced by neighboring clients. As a result, requests from
other clients are more likely to be forwarded towards other
service instances with higher CoS. This extension is of spe-
cific interest with regard to the parking system application
or the Internet gateway example.

Acknowledgments

Polly Huang was involved in initial discussions of this
project. We wish to thank Christian Bruns and Ulrich
Fiedler for their valuable feedback on field theoretic aspects
of the paper. We also would like to thank Matthias Bossardt
for his comments on the paper and all anonymous review-
ers.

References

[1] S. Deering and R. Hinden. IP Version 6 Addressing
Architecture. IETF RFC 2373, July 1998.

[2] Sun Microsystems. Jini Architecture Specification.
version 2.0, June 2003.

[3] IEEE Std 802.11-1997. Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer
(PHY) specifications. Number ISBN 1-55937-935-9.
1997.

[4] A. Qayyum, L. Viennot, and A. Laouiti. Multi-
point Relaying: An Efficient Technique for Flood-
ing in Mobile Wireless Networks. In 35th Annual
Hawaii International Conference on System Sciences
(HICSS’2001)., 2001.

[5] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: A
Library for Parallel Simulation of Large-scale Wire-
less Networks. In Proceedings of the 12th Workshop
on Parallel and Distributed Simulations (PADS ’98),
Banff, Alberta, Canada, May 1998.

[6] D. Johnson and D. Maltz. Dynamic Source Routing
in Ad Hoc Wireless Networks. In T. Imelinsky and
H. Korth, editors, Mobile Computing, volume 353,
pages 153–181. Kluwer Academic Publishers, 1996.

[7] A. Basu, A. Lin, and S. Ramanathan. Routing Using
Potentials: A Dynamic Traffic-Aware Routing Algo-
rithm. SIGCOMM’03, Karlsruhe, Germany, August
2003.

[8] Microsoft. The Universal Plug and Play (UPnP) Fo-
rum. http://www.upnp.org, 2003.

[9] J. Veizades, E. Guttman, C. Perkins, and S. Ka-
plan. Service Location Protocol. RFC 2165
(http://www.ietf.org/rfc/rfc2165.txt), June 1997.

[10] W. Adjie-Winoto, E. Schwartz, and J. Lilley. The
Design and Implementation of an Intentional Naming
System. In Proceedings of the 17th Symposium on
Operating Systems Principles (SOSP ’99), pages 186–
201, Charleston, SC, USA, 1999.

[11] U. C. Kozat and L. Tassiulas. Network Layer Support
for Service Discovery in Mobile Ad Hoc Networks.
INFOCOM 03, San Francisco, USA, April 2003.

[12] S. Helal, N. Desai, V. Verma, and C. Lee. Konark - A
Service Discovery and Delivery Protocol for Ad-Hoc
Networks. In Proceedings of the Third IEEE Confer-
ence on Wireless Communication Networks (WCNC),
New Orleans, USA, March 2003.

[13] TIBCO Software Inc. TIB/Rendezvous Concepts.
Technical Report Release 6.4, Palo Alto, CA, October
2000.

[14] C. Intanagonwiwat, R. Govindan, and D. Estrin. Di-
rected Diffusion: A Scalable and Robust Communica-
tion Paradigm for Sensor Networks. MOBICOM ’00),
Boston, USA, 2000.

[15] R. Koodli and C. Perkins. Service Discovery in On-
Demand Ad Hoc Networks. IETF Internet Draft draft-
koodli-manet-servicediscovery-00.txt, October 2002.

[16] C. Perkins, E. Belding-Royer, and S. Das. Ad Hoc
On-Demand Distance Vector (AODV) Routing. IETF
RFC 3561, July 2003.

