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Abstract. HTTP is the main protocol used by attackers to establish
a command and control (C&C) channel to infected hosts in a network.
Identifying such C&C channels in network traffic is however a challenge
because of the large volume and complex structure of benign HTTP
requests emerging from regular user browsing activities. A common ap-
proach to C&C channel detection has been to use supervised learning
techniques which are trained on old malware samples. However, these
techniques require large training datasets which are generally not avail-
able in the case of advanced persistent threats (APT); APT malware
are often custom-built and used against selected targets only, making
it difficult to collect malware artifacts for supervised machine learning
and thus rendering supervised approaches ineffective at detecting APT
traffic.
In this paper, we present a novel and highly effective unsupervised ap-
proach to detect C&C channels in Web traffic. Our key observation is
that APT malware typically follow a specific communication pattern that
is different from regular Web browsing. Therefore, by reconstructing the
dependencies between Web requests, that is the Web request graphs,
and filtering away the nodes pertaining to regular Web browsing, we can
identify malware requests without training a malware model.
We evaluated our approach on real Web traces and show that it can
detect the C&C requests of nine APTs with a true positive rate of 99.5-
100% and a true negative rate of 99.5-99.7%. These APTs had been used
against several hundred organizations for years without being detected.

Keywords: Malware detection, Web request graph, command and control chan-
nel, click detection, graph analysis, advanced persistent threat

1 Introduction

An increasing number of high-profile cyber attacks against companies and gov-
ernments were reported in the last years. In contrast to untargeted attacks that
aim at infecting as many hosts in the Internet as possible, these so called Ad-
vanced Persistent Threats (APTs) target a certain organization over long periods
of time, focus on a specific objective and are conducted by adversaries with sig-
nificant resources in a stealthy way [11,28]. Because these APT campaigns are



supposed to run for a long time, the malware used is often tailored-made and
attackers take great care in hiding its traces. This makes it difficult to obtain
APT malware samples for analysis — in contrast to general purpose malware
that can, due to their widespread presence3, easily be collected and analyzed.
As a result, traditional signature-based threat protection solutions and super-
vised learning techniques struggle to identify APT malware. As an example, the
Swiss defense contractor RUAG had been compromised for at least one year
until an external organization provided information that lead to the detection
of the HTTP C&C channel [1].

Once in place, APT malware typically rely on HTTP-based Command &
Control (C&C) channels [1,12,13,14,21,24,35,39]. Using HTTP provides the at-
tacker with two main advantages. First, this C&C channel is widely available
as most organizations allow their employees to browse the Web. Second, normal
Web browsing generates a huge amount of requests destined to a large number of
servers. This makes it very difficult to tell apart benign HTTP requests caused
by employees’ browsing from malicious activity, allowing attackers to hide their
communication in plain sight.

Detecting and blocking C&C channels under these constraints is challenging.
Indeed, the large number of Web servers contacted daily makes it impractical to
operate with a default-block policy and a whitelist for Web browsing. Therefore,
most organizations use a default-accept policy in combination with a blacklist
to detect C&C channels in the Web traffic of internal clients. The employed
blacklists typically combine the Indicators Of Compromise (IOC) from different
commercial and freely available intelligence feeds, such as abuse.ch, cymon.io,
autoshun.org, and www.openbl.org. Unfortunately, since the target scope of APT
malware is very narrow, traces of APT samples are often only detected by ac-
cident and it can take years until corresponding malware samples are recovered
and IOC are added to intelligence feeds. Furthermore, the fact that there are
only few APT malware samples available makes it difficult to apply supervised
learning techniques for the detection of APT campaigns.

In this paper, we propose an unsupervised detection approach that does not
need any malware samples for training. Our one-class classifier only requires
labeled benign traces for training. Our approach is built around the observation
that C&C channels typically follow a specific communication pattern that is
unrelated to regular Web browsing. Therefore, after analyzing and reconstructing
all the artifacts caused by human Web browsing, i.e., creating the Web request
graph of the recorded Web traffic [25,42], the malicious requests to C&C servers
stand out because they do not have any dependency or interaction with other
Web requests; they are so-called unrelated nodes in the Web request graph.
The key challenge behind this approach is that simply relying on the HTTP
referrer for Web request dependency reconstruction, such as done by [17,42],
results in many unrelated benign nodes. For this reason, we studied the Web
traffic caused by benign browsing in detail and introduce several new heuristics

3 430 million malware samples have been released in 2015 according to Symantec’s
Internet security threat report [37]



to reconstruct missing links in the request graph. For instance, if the requested
URL of an unrelated node can be found in the HTML source code of a recently
accessed Web page, we can connect both requests. In combination with a small
whitelist of benign services causing unrelated requests, such as OCSP servers
and software update services, this approach allows us to identify C&C requests
with high accuracy — after running the link completion process and applying
the whitelist, all remaining requests are considered as suspicious.

This paper provides the following key contributions:
– Link completion heuristics that extend and complete the request graph gen-

erated in our previous work Hviz [17] by linking unrelated Web requests to
their most likely parent. Link completion reduces the number of unrelated
nodes in benign Web traffic by a factor of 8-30.

– A malware detection approach that marks non-whitelisted, unrelated Web
requests in (completed) request graphs as malicious. Our whitelist only con-
tains certificate authority domains and the update server of the operating
system.

– A comprehensive evaluation in which we evaluate the performance of our
approach by randomly inserting C&C traces covering the activities of trojan
horses, exploit kits, botnets, ransomware and APTs into benign Web traffic
traces4. We detect 99.5% of all malicious C&C requests (true positive rate)
while falsely labeling 0.3-0.5% of the benign requests as malicious (false
positive rate).
The rest of this paper is structured as follows. Section 2 presents our malware

detection approach that applies a click detection classifier and link completion
heuristics to connect unrelated, benign Web request to their most likely parent.
Section 3 evaluates our approach and Section 4 discusses our results. Section 5
compares our approach to related work and Section 6 concludes the paper.

2 Approach

Our three-step malware detection approach is shown in Figure 1. It detects
C&C channels of APT malware (used in targeted attacks) and ’general purpose’
malware (used in untargeted attacks). In a first step, we extract the (incom-
plete) request graph from Web traffic logs. In a second step, we complete the
request graph by (i) click detection (see Section 2.3) and (ii) link completion
(see Section 2.4). In a third step, we filter the remaining unrelated requests. The
remaining unrelated requests are considered as suspicious unless the contacted
server is whitelisted. We use Bro IDS [31] and Hviz [17] to create the request
graph.

In the following we first give an overview on request graphs in Section 2.1,
which are the base for our detection approach. Section 2.2 describes the idea
behind our approach in more detail and the applied click detection and link
completion are discussed in Section 2.3 and Section 2.4, respectively.

4 We use benign Web traffic generated by scripts accessing the top 250 Web sites for
Switzerland and user traffic logs from ClickMiner [25].
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Fig. 1. Our malware detection approach: First, we extract the request graph from Web
traffic logs. Second, we complete the request graph by (i) click detection and (ii) link
completion. Third, we filter the remaining unrelated requests that are not whitelisted.

2.1 Background on Web request graphs

Web traffic logs store HTTP requests and corresponding responses. The requests
can be connected to a request graph. In a request graph, a node corresponds to
an HTTP request and its response. Two nodes i and j can be connected using
a directed edge (i, j) if the request j has been issued by the response of i. For
most HTTP requests, these links can be derived from the referrer field in request
j, which points to i. If there is a directed edge (i, j) from i to j, then i is the
parent of j and j is the child of i. If there are two edges (i, j1) and (i, j2) then
j1 and j2 are siblings. Unfortunately, the referrer is not always set. Therefore,
request graphs are often incomplete if they are constructed solely based on the
referrer information.
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Fig. 2. Example request graph

We distinguish between three types of requests: ’head’, ’embedded’ and ’un-
related’ requests, as can be seen in Figure 2. Head requests are requests that have
been issued by the user directly, for example by typing an URL into the browser,
clicking on a link, a browser bookmark or submitting a Web form. Embedded
requests are generated as a result of head requests. For instance, accessing a Web



page triggers embedded requests to content delivery networks and analytics ser-
vices. Unrelated nodes have no dependency to previous requests. They do not
have any parent or children. Figure 2 shows an example request graph where
the user has directly accessed two URLs, marked as head requests. Both head
requests trigger further requests, marked as embedded requests. Figure 2 also
contains two unrelated requests.

2.2 Malware detection in Web request graphs

Our detector is based on the idea that any HTTP request must have one of the
following root causes:
1. Triggered by users’ Web browsing: The request is directly or indirectly trig-

gered by a user’s Web browsing. These requests are part of a larger graph
component that represents Web browsing.

2. Triggered by benign software applications: Many benign software applications
running on end hosts issue HTTP requests, for example to check for updates
or load information. These requests are unrelated to a user’s Web browsing
and thus classified as “unrelated”. End hosts in larger organizations typically
run a pre-build image that contains a limited number of benign software
applications. Thus the Web services that are contacted by valid application
software can easily be whitelisted.

3. Triggered by malicious software: Any request not being part of one of the
previous categories falls into this category.
The assumption behind this scheme is that regular Web browsing results

in perfectly connected request graphs. However, as we will show in Section 3.2
between 2.6 % and 9 % of the links in the request graph are typically missing.
Therefore we introduce an heuristical approach that adds the missing links in
the request graph. After applying the graph completion heuristic, our detector
considers all remaining unrelated nodes as either being triggered by a benign
software that accesses a server, such as the Windows update server, or by a
malware accessing a command and control server.

2.3 Click detection

The goal of click detection [42,25,17,40] is to distinguish between user clicks and
other requests (embedded and unrelated requests). We use the features shown in
Table 1 as input for the machine learning. We use labeled data for training, but
we only train on benign traces. Hence, we do not require any labeled malware
trace. After evaluating different machine learning classifiers using Python scikit-
learn [32], we found that a random forest classifier performs best, which is in-
line with the work of Vassio et al. [40]. The detailed results are shown in our
evaluation in Section 3.1.

2.4 Link completion

The goal of our link completion algorithm is to add missing edges to the request
graph. Referrer-based request graphs of benign Web browsing contain many un-



Table 1. Feature set for click detection

# feature description

F1 content type content type such as text/html or image/jpeg
F2 response length number of bytes of the HTTP response body
F3 number of referrals number of children in request graph
F4 time gap time gap between current and parent request
F5 URL length number of characters of the URL
F6 advertisement Is the request an advertisement (in EasyList)?
F7 presence of parent Does the node have a parent node (referrer)?

related nodes. In the following we discuss the primary reasons we have observed
in our traces:

– Certificate status checks: The Online Certificate Status Protocol (OCSP) [18]
is an Internet protocol which is used as an alternative to certificate revoca-
tion lists (CRLs). It allows applications to determine the validity of a digital
certificate. An OCSP client (e.g., the browser) issues a status request to the
Certificate Authority (CA). The browser suspends the acceptance of the cer-
tificate until it receives a response from the CA. Those requests/responses do
not have a referrer header set and do not cause any embedded requests. Thus,
the nodes corresponding to them are unrelated. The same is happening with
the usual transfer of certificates and CRLs. These requests can be identified
by their content type which is application/ocsp-response, application/pkix-
cert and application/pkix-crl. However, note that we can not simply whitelist
all requests with these content types, as this would make it very easy for at-
tackers to hide their HTTP requests by including a corresponding (fake)
header.

– Favicons: We observed that whenever Firefox sends an HTTP request to
retrieve the favicon of a website, it does not include the referrer field in
the HTTP request headers. As it turned out, this happens due to the link
rel=’icon’ tag found in the HTML source code of web pages. There is a
known bug associated with the above behavior [9] which has been resolved
but not fixed yet. The same bug is not present in Google Chrome.

– Privacy : There are cases where the referrer header can affect the user’s pri-
vacy. For instance, a URL might contain personal information in its query
strings in case of a GET request. For example, this was the case with Face-
book in 2010 [20]. More specifically, advertisers could identify users who
clicked on their advertisement since their user ID was contained in the re-
ferrer header. Thus, security-aware developers remove this information from
the referrer by specifying referrer policies [41], which were recently devel-
oped by the World Wide Web Consortium (W3C). These referrer policies
allow developers to limit the referrer to only the visited domain of the origin
website or to even remove referrers completely. Another case which results
in a missing referrer is the transition from an object loaded via HTTPS to



an HTTP object (downgrade). The main reason for this behavior is to avoid
leaking sensitive information in the plain-text HTTP request.

– Cross-Origin Resource Sharing (CORS) [3]: When browsers make cross-
domain HTTP requests, the referrer can be missing while the origin header
is set. For example, this can happen when an OPTIONS preflight request is
being sent, in order ”to determine the options and/or requirements associ-
ated with a resource before performing the actual HTTP request” [4]. Firefox
does not set the referrer header when performing this kind of requests, in
contrast to Chrome. As a result, nodes that relate to this HTTP method
become unrelated in Firefox.

– Invalid Referrer : The referrer header can have an invalid value which means
that it does not correspond to a request URI of any previous node in the
graph. A possible reason for this behavior could be bugs in the software.

– Redirect Implementation: There are several different ways for a user to be
redirected from a source to a destination website. Firstly, the recommended
way is to provide a 302 HTTP status code combined with the Location value
in the HTTP response headers. Another way is to send a regular 200 HTTP
status code and set the Refresh header or an HTML meta tag. In addition,
a user can be redirected using Javascript. Depending on the implementation
of the redirection, there are different behaviors of browsers to either keep or
suppress the referrer [20].

The link completion algorithm completes the request graph to reduce the
number of unrelated nodes in benign traffic. Our algorithm, which is depicted in
Figure 3, takes as main input an unrelated node n and a request graph G. The
output is the most likely parent in the graph or False if the node does not fit
into the graph sequence.

Firstly, the algorithm uses a whitelist in order to filter requests from benign
software that can be running on the host (step 1). The whitelist consists of
37 entries and includes OS update domains as well as Certificate Authorities.
The latter domains can be reduced since companies usually set up their own
OCSP responder which acts as an OCSP proxy server. Further, domains and IP
addresses contacted by deployed software can be added to this list. We argue
that the overhead for maintaining a corresponding whitelist is small, primarily
because of two reasons: (I) Even if an organization does not use an OCSP proxy
server, the number of contacted OCSP servers is limited as certificate issuers
typically only operate few OCSP servers and there are publicly available lists
of these servers. (II) Security-aware organizations should already be aware of
the software deployed in their network and the corresponding external servers
contacted by the software, which allows them to add the corresponding domains
and IP addresses either proactively or reactively to the whitelist. In fact, our
approach can be helpful to identify software that has been installed without
authorization because most software includes an update process that operates
over HTTP(S). The corresponding requests will most likely be unrelated such
that our system will trigger an alert when the software contacts its update server.
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Fig. 3. The link completion algorithm tries to find the most likely parent of a node
n inside a request list L. L is sorted by time and only contains the previous requests
of a given time window. Steps 3-5 are processed twice, first for the click requests and
second for the embedded requests in L.

If the node is not whitelisted, its possible parent is predicted as follows (step
2): Based on the fact that the HTTP requests of an unrelated node’s possible
parents were performed before it, we create a list with all the candidate nodes
falling into a time window covering few seconds before the analyzed request. The
time window’s length is not fixed and can be provided as input to the algorithm.
Before adding a possible parent node in the list, the algorithm confirms that it
is a candidate depending on its content type. There are certain content types
which have much more embedded objects (and therefore cause child requests)
than others. For instance, an HTML document is more likely to perform more
requests to load additional content (e.g., third-party content) than a Javascript
file. In contrast, a node representing a request to a PNG image should not have
any children since it is not rational for this type of content to make additional re-
quests. The algorithm encodes the knowledge on likely and unlikely parent-child
relations as bigrams of content types. For instance, a node whose content type
is text/html will usually have children with content types image/jpeg, text/css,
application/javascript, etc., whereas a text/css object is more likely to have chil-
dren with image/png, image/gif, application/font-woff etc. content types. The
bigrams are constructed by traversing all the graphs of the network traces in
the training set and counting the top length-two sequences of the content types
with most children.

For each candidate parent node in the list, its response body is examined
(step 3). The idea behind this step is that the absolute or relative URLs of child



objects are often contained in the parent’s response body. For example, the URL
of a displayed image is typically contained in an src attribute in the webpage
embedding the image and if the user clicked on a link, then the corresponding
URL often previously appeared as href attribute. While this method is quite
accurate, it requires complete response bodies to be stored, which can be large
– especially if users consume videos. Therefore, we only apply this approach
to response bodies for content types that have been found to have the most
children, such as text/html responses.

Favicons can partially be linked using the above methods, but there is also a
more accurate way (step 4): If the unrelated node’s request URI is www.example.
com/favicon.ico then, the parent’s should be www.example.com. By default the
favicon is placed in the root directory of the web page and browsers know where
to find it. However, it is a common practice that developers place their favicons
in other directories. In that case, the algorithm finds the parent based on the
domain name and the content type of the possible parent nodes. Further, if a
request’s HTTP method is OPTIONS and the origin header value is set, then
the parent is identified based on this value (step 5).

The steps 3-5 are run twice. In a first run, only nodes in the time window
L that the click detection identified as head nodes are considered. If no parent
has been found in the first run, then a second run is started which considers all
nodes in the time window L. This way, identified clicks have a higher priority.

In order to handle requests with invalid referrers, the algorithm extracts the
domain of the invalid referrer and searches for the parent that is closest in the
time domain (step 6). The algorithm connects requests according to the origin
header field, if the header field is available (step 7). If a request’s content type
relates to an image, then the time windows L is traversed and the first parented
node that is either a head node, a node with text/html or text/css content is
returned (step 8).

Finally, the algorithm matches nodes of the same content type and domain to
the same parent (step 9). In other words, the algorithm tries to find the closest
sibling s, which has the same content type and domain as the analyzed node n,
and connects n to the parent of its closest sibling s.

3 Evaluation

For our evaluation we have merged benign Web browsing traces with malicious
C&C requests. We have two types of benign Web traces, script-generated traces
and user traffic collected by Neasbitt et al. [25]. We collected C&C requests from
general purpose malware and APT malware samples from Weblogs [2,5,6,7]. We
only use the post infection traffic of that general purpose/APT malware samples.

Table 2 shows our benign datasets. We have generated datasets S1 and S2

with a python script that emulates the Web browsing behavior of users by ac-
cessing the Alexa top 250 websites of Switzerland. Our script is based on the
Selenium WebDriver [36]. It visits each of the top 250 websites in random order.
We have removed websites with adult content from that list. The script makes



five clicks per average on each website and stays on each resulting page for a
random time interval. The time spent on each page has an upper bound of 30
seconds. We record only unencrypted HTTP traffic. This is achieved by visiting
the HTTP versions of the websites included in the input list. In case the website
is forcing SSL by redirecting the client to its secure version, the connection is
terminated and the next URL in the list is fetched.

Table 2. Benign Web traffic: S1 and S2 have been generated by a script and C1 has
been taken from the ClickMiner dataset [25]

# train # test
id data source browser #traces requests requests

S1 script Firefox 46.0.1 10 132k 278k
S2 script Chrome 54.0.2840.71 10 112k 257k

C1 ClickMiner Firefox 14.0.1 24 - 74k

We recorded 10 browsing traces using Mozilla Firefox as a browser and 10
browsing traces using Google Chrome. The user clicks have been recorded in
order to train and evaluate the click detection classifier. Three out of the ten
traces are used for training the click detection classifier. The other seven traces
are used for testing in click detection, link completion and malware detection.

For evaluation we additionally used a third benign dataset C1 that contains
traffic from real users. The dataset has been published together with the Click-
Miner paper [25] and contains 24 traces. These traces were accumulated from a
user study with 21 participants. Each participant was requested to browse any
website they wished for twenty minutes while preserving their privacy.

Table 3 summarizes the general purpose malware samples that have been
collected from Contagiodump [2], Malware-traffic-analysis [6], the malware cap-
ture facility project [5] and pcapanalysis.com [7]. We labeled the C&C requests
of these 49 malicious traces manually. We used a variety of general purpose
malware that can be categorized in five malware families: botnets, exploit kits,
trojan horses, sality and ransomware.

Table 3. C&C requests from published general purpose malware traces [2,5,6,7].

id malware type #traces #C&C requests

M1 Botnet 6 478
M2 Exploit Kit 13 357
M3 Trojan 25 274
M4 Sality 3 155
M5 Ransomware 2 3



Table 4 lists our APT malware samples. Again, we labeled the C&C requests
manually. Section 3.4 explains the APTs in more detail. Unfortunately, some
of the APT malware traces only consist of few HTTP samples. We decided
to include these traces in our evaluation in order to investigate whether our
approach mistakenly connects these requests to benign traffic or not.

Table 4. C&C requests collected from published APT malware traces [2].

id APT type #traces #C&C requests APT report

A1 TrojanCookies 1 720 [24]
A2 Lagulon 1 561 [12]
A3 Taidoor 1 35 [39]
A4 Netraveler 1 11 [21]
A5 Tapaoux 1 8 [23]
A6 Sanny 1 6 [14]
A7 Taleret 1 1 [13]
A8 Likseput 1 1 [24]
A9 Darkcomet 1 1 [35]

3.1 Click detection

The information gain of each feature F1-F7 for click detection is depicted in
Figure 4 for the datasets S1 and S2 separately. It can be seen that the results
are similar for both tested browser types. The content type (F1) has the highest
information gain. Most user clicks are performed on a text/html content type,
while embedded requests often contain images, scripts, style sheets but also
text/html. The response length contains more bytes for user clicks than for
embedded requests (F2). The number of referrals (F3) is higher for user clicks
since the accessed websites often trigger many embedded requests that refer
to the clicked website. The time gap (F4) between a request and its parent is
usually longer for user clicks since they are manually triggered as compared to
embedded requests that are automatically generated. The URL length (F5) of
user clicks are longer than the one of embedded requests. Users do not often
directly access servers that are listed on EasyList as advertisement sites (F6).
The presence of a parent feature (F7) provides only limited information gain.

We have evaluated click detection for the datasets S1 and S2 separately.
A separate investigation shows us, how well the approach works for different
browsers. We have tested Mozilla Firefox in S1 and Google Chrome in S2, which
are two of the most popular Web browsers. For both datasets, we used the same
testing methods. We randomly selected three out of ten traces for training and
used the remaining seven traces for testing. The actual user clicks have been
recorded while capturing the network traffic. We assume that every access to a
Web server that is listed in our recorded click database is a user click. We have



F1 F2 F3 F4 F5 F6 F7
0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

S₁
S₂

Fig. 4. Information gain per feature.

evaluated various machine learning approaches and found that a random forest
classifier with 1000 estimators shows the best performance. A decision tree was
the runner up.

The results of the random forest classifier are listed in Table 5. The trained
random forest classifier has a recall of 0.96 for both browsers. The precision is
higher for Google Chrome with 0.96 as compared to Mozilla Firefox with 0.94.
The resulting f1 score is therefore slightly better for Google Chrome. Our click
detection performance is comparable to the one published by Vassio et al. [40].
We refer to Vassio et al. [40] for a more detailed analysis of click detection based
on a random forest classifier.

Table 5. Click detection classification results

dataset recall precision f1 score

S1 0.96 0.94 0.95
S2 0.96 0.96 0.96

In the following, all presented results are based on Web request graphs that
have been updated by the click detection classifier, such that only requests that
have been classified as user clicks are marked as head nodes. The remaining
results are only based on the test datasets of S1, S2 and C1. We have also
applied click detection to the Web request graphs of the ClickMiner dataset.
We have used the trained classifier of S1, since ClickMiner has used (a previous
version of) Mozilla Firefox.

We have merged the malicious datasets M1−5 randomly into the benign test
datasets S1, S2 and C1 to evaluate our approach for general-purpose malware.
The merged datasets are labeled as {S1,M}, {S2,M} and {C1,M}. Similarly, we
have merged the malicious traces A1−9 randomly into the benign test datasets
S1, S2 and C1 to evaluate our approach for APT malware. The merged datasets
are named {S1, A}, {S2, A} and {C1, A}.



3.2 Link completion

Table 6 gives an overview of our results for link completion and malware de-
tection for all merged datasets. It can be seen that the malicious requests are
mostly unrelated. Only six requests from general-purpose malware are related.
When we only rely on the referrer, we see that the vast majority of the unrelated
requests is benign (72-95%). After applying click detection and link completion,
only 23-39% of the remaining unrelated requests are benign.

Table 6. Statistics on the number of related/unrelated and benign/malicious requests
for all merged datasets. The majority of the requests are benign for all datasets. Our ap-
proach significantly reduces the number of unrelated benign requests without reducing
the number of unrelated malicious requests.

datasets {S1,M} {S2,M} {C1,M} {S1, A} {S2, A} {C1, A}

# benign 278 367 257 123 74 037 278 367 257 123 74 037
# malicious 1 267 1 267 1 267 1 344 1 344 1 344

referrer-based approach

# related 253 239 250 490 70 851 253 233 250 484 70 845
# unrelated 26 395 7 900 4 453 26 478 7 983 4 536

# related malicious 6 6 6 0 0 0
# unrelated malicious 1 261 1 261 1 261 1 344 1 344 1 344

# related benign 253 233 250 484 70 845 253 233 250 484 70 845
# unrelated benign 25 134 6 639 3 192 25 134 6 639 3 192

our approach: click detection and link completion

# related 277 551 256 411 73 650 277 545 256 405 73 644
# unrelated 2 083 1 979 1 654 2 166 2 061 1 737

# related malicious 6 6 6 0 0 0
# unrelated malicious 1 261 1 261 1 261 1 344 1 344 1 344

# related benign 277 545 256 405 73 644 277 545 256 405 73 644
# unrelated benign 822 718 393 822 718 393

We evaluated our link completion algorithm with the test datasets S1, S2

and C1. The results are depicted in Figure 5. We can see that the S2 dataset has
less unrelated nodes as compared to dataset S1 before applying link completion.
Chrome produces a more complete request graph as compared to Firefox since
it sets the referrer header more often than Firefox as explained in Section 2.4.
Our link completion algorithm decreased the number of unrelated nodes by an
average factor of 30 for S1 dataset, nine for S2 and eight for ClickMiner. After ap-
plying link completion, each test dataset contains between 0.28-0.53% unrelated
nodes.
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Fig. 5. Share of unrelated nodes before and after link completion. Link completion
decreases the number of unrelated nodes by an average factor of 30 for S1, nine for S2

and eight for C1.

3.3 General purpose malware detection

We evaluated the ability of the algorithm to perform malware detection over
the above metrics using the merged datasets in the following way. For each data
source we randomly merged its traces with malicious ones by injecting the whole
malicious graphs inside the benign graph at random timestamps. This would
simulate a real case scenario where a user browses the Web and at the same
time a general purpose malware is running in the background (e.g., exfiltrating
data to the C&C server). We run the algorithm on each merged trace for each
data source and the results can be seen in Table 7. 99.5% of the C&C requests
were successfully detected while 0.5% were missed, independently of the benign
dataset used. The true negative and false positive rates are the same as shown in
Figure 5. Hence, we can see that the link completion algorithm does not falsely
connect benign and malicious nodes. The false positive rate is a bit different
for each dataset and relates to the benign nodes (requests/responses) that the
algorithm was not able to connect in the graph.

Table 7. Malware detection results.

data set TPR FPR TNR FNR

{S1,M} 0.995 0.005 0.995 0.005
{S2,M} 0.995 0.003 0.997 0.005
{C1,M} 0.995 0.003 0.997 0.005

3.4 Advanced persistent threat malware detection

Advanced persistent threats employ targeted malware. They are hard to detect,
because they only attack selected high-profile targets, such as governments, mil-
itary, diplomats and research institutes. The attackers use advanced methods to



infect the target’s computers, because their targets are often better protected
against malware than the average user. APTs can operate for years without be-
ing noticed by the victims. When an APT has successfully infected a high-profile
target, it is often reused to attack other high-profile targets.

Nettraveler is an APT that has been in operation since at least 2005. It
automatically extracts large amounts of private data over long time periods.
The APT malware compresses the private data and sends it to C&C servers in
HTTP requests. Kaspersky Labs [21] revealed this cyber espionage campaign
in 2013. More than 350 high-profile targets have been attacked in 40 countries
during this campaign. When Kaspersky revealed the campaign, 22 GB of stolen
data was still on the C&C servers. However, it is likely that stolen data had been
removed from the servers during the campaign. Therefore the total amount of
stolen data cannot be estimated.

The attackers send spear phishing e-mails to selected users. The Nettraveler
APT malware is hidden inside a Microsoft Office document. The APT malware
takes advantage of one of two vulnerabilities in Microsoft Office that can lead to
remote code execution. Both vulnerabilities have been patched in the mean time,
the vulnerability CVE-2010-3333 in 2010 and the vulnerability CVE-2012-0158
in 2012. Interestingly, this APT has been recently used to attack high-profile
targets in Russia, Mongolia, Belarus and other European countries in 2016 [34].
This indicates that even high-profile targets do not continuously and consistently
apply critical software updates on their computers. Hence, attackers can still find
a machine that can be attacked in order to get access to the corporate network.

We have also investigated malicious samples of the following APTs.

– Likseput (trace A8) is an APT malware which was used by a government-
sponsored Chinese APT group, called APT1, in order to control compro-
mised systems in cyber espionage campaigns that took place since at least
2006. APT1 has already extracted hundreds of terabytes from at least 141
organizations according to the Mandiant report [24].

– TrojanCookies (trace A1) is another APT malware used by APT1. It com-
municates with the C&C server by encoding the commands as well as the
responses in the cookie using base64 and a single-byte xor obfuscation.

– Lagulon (trace A2) was used in several targeted campaigns performed by an
Iranian group, named Cleaver, in 2013. The APT malware can log the user’s
keystrokes, download and execute code, take screenshots and periodically
exfiltrate data to a remote HTTP-based C&C server. The attackers gained
highly sensitive information from government agencies and infrastructure
companies in many countries [12].

– Sanny (trace A6) was used in targeted attacks primarily against major in-
dustries in Russia. It was detected in 2012. The attackers sent a malicious
Microsoft Word document via spear phishing emails. The APT malware pro-
files the victims regarding their region and language. It extracts credentials
such as saved passwords in applications [14].



– Taidoor (trace A3) APT malware, a remote access trojan, was used to com-
promise targets since at least 2008. The threat actors sent out spear phishing
emails to Taiwanese government email addresses [39].

– Taleret (trace A7) APT malware was also used in the Taidoor campaign. Un-
like Taidoor, it connected to Yahoo blogs to retrieve a list of C&C servers [13].

– Tapaoux (trace A5) is an APT malware used by the Darkhotel APT cam-
paign which appeared to have been active for seven years since 2007 [23].
The attackers also used spear phishing with advanced zero-day exploits.

– Darkcomet (trace A9) is a remote access trojan, which was developed in
2008. The Syrian government used it to spy on dissidents during the Syrian
Civil war in 2014 according to Fidelis Security [35]. It was also associated
with operation hangover, a cyber espionage campaign against Pakistani or-
ganizations that took place from 2010 until 2013 [29].

We have evaluated our malware detection approach on malicious traces for all
nine mentioned advanced persistent threats, see Table 4. All of these APTs have
lead to severe damages on high-profile targets as described before. We randomly
integrated the C&C requests and responses of A1−9 to the benign test data sets
S1, S2 and C1. Our malware detection approach successfully detects all C&C
requests, as can be seen in Table 8. Therefore, the true positive rate is one and
the false negative rate is zero for all tested data sets. The false positive rate has
not changed as compared to Table 7.

Table 8. Advanced persistent threat detection results.

data set TPR FPR TNR FNR

{S1,M} 1.000 0.005 0.995 0.000
{S2,M} 1.000 0.003 0.997 0.000
{C1,M} 1.000 0.003 0.997 0.000

4 Discussion

In total 2605 of 2611 C&C requests (99.8%) are unrelated in the Web request
graphs of the malicious datasets of general purpose malware M1−5 and APT
malware A1−9. Only six C&C requests are related. There are three traces that
each contain a pair of related C&C requests. Each pair of C&C requests happens
due to an URL redirection. Table 9 shows the three traces that contain related
C&C requests. It can be seen that the HorstProxy trace is the only tested trace
without any unrelated C&C request. All other 57 traces contain unrelated C&C
requests, which are identified by our approach. This means that our approach
detects C&C traffic in 57 out of 58 malicious traces (including APT traces).

Our experiments show that most C&C requests are indeed unrelated and
are correctly identified as malicious. Only HTTP redirects of malicious requests



Table 9. Malicious traces with false negatives

set trace # related # unrelated

M3 HorstProxy EFE5529D697174914938F4ABF115F762-2013-05-13 [7] 2 0
M5 BIN sality CEAF4D9E1F408299144E75D7F29C1810 [7] 2 6
M5 InvestigationExtraction-RSA Sality [2] 2 8

are not identified. Such redirects could be merged in a request graph to single
nodes. In this case, we would have identified the redirected C&C requests as
malicious. However, we did not combine redirections and redirection targets into
single nodes in this work as this could result in additional false positives if the
benign requests have no relation to other nodes in the Web graph.

Our approach works on single clients and equally good for general purpose
and APT malware. This is a strong result considering the fact that some of
the considered APTs were active for years without being noticed. Our approach
would have detected the general purpose/APT malware in few minutes. We
consider 30 second time windows, this means that a real-time implementation
of the detection approach can react in a granularity of 30 seconds to a C&C
request. Our C&C detection approach can significantly improve the response
time to attacks, which might last for several years until the vulnerability has
been identified and patched.

As with any malware detection approach, attackers might change their be-
havior in order to better obfuscate their activities and circumvent detection.
However, the fact that the investigated malware traces caused considerable dam-
age, clearly shows that there is need for an approach like ours. We see several
future challenges for our approach. Firstly, the C&C traffic can be adapted such
that it sends related requests that mimic benign Web browsing traffic. Fake
referrers could be detected by analyzing the popularity of links in the request
tree, as outlined in our previous work [17]. Further, click detection could be used
to analyze the sites visited by users. In case malware builds its own sequence of
related requests, this could still identify the C&C channel since it is a Web site
that is visited repeatedly.

Secondly, C&C requests can set a referrer to a benign request in order to
better hide inside Web browsing. In this scenario, one has to take the referrer
field into question. One will look at other features such as the timing behavior
between related requests in order to see, whether the general purpose/APT
malware performs the requests in the same manner as a Web browser.

Thirdly, the number of false positives might increase in future due to a grow-
ing complexity of Web request graphs and removal of referrers due to privacy
constraints. In this case, one can develop further heuristics to improve the link
completion. Furthermore, one could reduce the number of detection alerts by
summarizing the unrelated requests on domain level. One can send a detection
alert whenever a server has been contacted with unrelated requests for at least
a given number of times. This should significantly reduce the number of alerts.



Finally, benign and malicious Web traffic might mostly consist of HTTPS
connections instead of HTTP. This challenge can be overcome by using man-in-
the-middle proxies, which allows a network application to inspect the otherwise
encrypted traffic. This is already done in many companies and other high-profile
targets.

5 Related Work

Supervised malware detection: Most related approaches that detect C&C
channels in network traffic use supervised machine learning that trains on labeled
malware samples. For instance, Perdisci et al. [33] propose a scalable malware
clustering system for HTTP-based malware, which has a detection rate of 65%-
85%. BotFinder [38] creates botnet traffic inside a controlled environment in
order to learn bot detection models with a detection rate of 80%. ExecScent [26]
learns adaptive control protocol templates in order to determine a good trade-
off between true and false positive rates. DISCLOSURE [8] detects C&C traffic
using a large-scale NetFlow analysis that relies on labeled training samples. Their
detection rate is about 90%. They use external reputation scores to reduce the
false positive rate.

HAS-Analyzer [22] uses a random forest classifier with an accuracy of 96%
and a false positive rate of 1.3% without using any whitelist. JACKSTRAWS [19]
correlates host behavior with network traffic to detect C&C channels of bot-
nets. The authors use machine learning with labeled malicious samples and
achieve a detection rate of 81.6% at a false positive rate of 0.2%. In contrast
to [8,19,22,26,27,33,38], our detector works without learning from malware sam-
ples while providing a very high true positive rate and a low false positive rate.

Our link completion algorithm uses similar techniques as the ones devel-
oped by Nelms et al. [27] for the WebWitness system. WebWitness classifies
the infection method as malicious drive-by, social engineering and update/drop
downloads. However, in contrast to our approach, Nelms et al. do not build a
malware detector, instead they focus on enabling forensic investigations of al-
ready identified malware infections.

Unsupervised malware detection: BotSniffer [16] presents an unsuper-
vised network-based anomaly detector without prior knowledge of the malware.
The detection rate is 100% with a false positive rate of 0.16%. BotMiner [15]
clusters communication patterns and malicious activities traffic and identifies
botnets due to a cross cluster correlation. The detection rate is 100% for HTTP
bots with a false positive rate of 0.003%. However, BotSniffer and BotMiner only
work on network level with multiple infected hosts. BotSniffer takes advantage of
the observations that bots communicate in a similar spatial-temporal behavior
to the malicious server. However, these approaches do not work for APTs, which
only infect a single computer.

Burghouwt et al. [10] and Zhang et al. [43] correlate Web request graphs with
user interactions to detect malware. Burghouwt et al. achieve a detection rate
of 70%-80% with a false positive rate of 0.17%, Zhang et al. achieve an accuracy



of 96%. In contrast to our approach, they continuously record user interactions
such as clicks and keystrokes. We only record the accessed domains in an initial
training stage for click detection. After training is completed, we do not need to
record any user interaction. Furthermore, [10,43] do not employ link completion.

Oprea et al. [30] propose a graph-theoretic framework based on belief prop-
agation to detect early-stage APT campaigns. Unlike our approach, they do
not fully rely on the network traffic but also collect registration information of
the accessed domains. Furthermore, their approach only works on the enterprise
network level, while our approach also works for single hosts.

6 Conclusion

We propose a novel APT and general purpose malware detection approach that
identifies command and control channels in Web request graphs. Our approach
relies on the observation that malware communicates to malicious servers peri-
odically with single, unrelated HTTP requests. This communication pattern is
different from Web browsing where page requests usually result in several re-
quests that are related to each other. Software applications and the operating
system also send single, unrelated request to dedicated servers. Their traffic pat-
terns are similar to C&C requests. However, we assume that these servers are
well known and can be whitelisted. In our experiments, we whitelist 37 update
servers and certificate authorities.

Our malware detection approach improves the request graphs of related work
by automatically detecting user clicks (click detection) and restoring dependen-
cies between unconnected requests (link completion). In a first step, we use a
random forest classifier to detect user clicks inside request graphs. Our classifier
relies on seven features on node and graph level, such as content type (node
level) and number of children (graph level). We evaluate our click detection clas-
sifier with generated benign browsing traffic that accesses the Alexa top 250 of
Switzerland. Our classifier has a f1 score of 95% for Firefox and 96% for Chrome.

In a second step, we connect unrelated nodes to their most likely parent.
We evaluated link completion on the script-generated traffic and real user traffic
provided by ClickMiner [25]. We find that 91-97% of the HTTP requests in Web
browsing are already connected to other requests after extracting the request
graphs with Hviz [17]. Our heuristic algorithm, called link completion, connects
unrelated requests to their most likely parent. Our experiments show that link
completion adds many missing links to the request graph. Between 99.5% and
99.7% of the benign nodes are connected after link completion.

We have evaluated our detection approach for 49 general purpose malware
and nine APT malware packet traces, which are publicly available. The post-
infection C&C traffic of these traces consists of 99.8% unrelated requests and
0.2% related requests. When we randomly merge these requests to benign Web
browsing traffic, we can detect 99.5% of the malware and 100% of the APT
C&C requests while having a false positive rate of 0.3-0.5%. Our approach can
be applied in real-time at the granularity of single clients. This means that C&C



traffic can be recognized in the order of 30 seconds. The Web request graphs
can be tracked and completed on a per client base. This allows the proposed
algorithm to scale horizontally as well as vertically. We hope that our findings will
help to significantly shorten the timespan until new pieces of malware, especially
those used by APTs, are discovered.
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