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Abstract—Detecting anomalous behavior in wireless spectrum
is a demanding task due to the sheer complexity of the electro-
magnetic spectrum use. Wireless spectrum anomalies can take a
wide range of forms from the presence of an unwanted signal
in a licensed band to the absence of an expected signal, which
makes manual labeling of anomalies difficult and suboptimal.
We present, Spectrum Anomaly Detector with Interpretable
FEatures (SAIFE), an Adversarial Autoencoder (AAE) based
anomaly detector for wireless spectrum anomaly detection using
Power Spectral Density (PSD) data which achieves good anomaly
detection and localization in an unsupervised setting. In addition,
we investigate the model’s capabilities to learn interpretable
features such as signal bandwidth, class and center frequency
in a semi-supervised fashion. Along with anomaly detection the
model exhibits promising results for lossy PSD data compression
up to 120X and semi-supervised signal classification accuracy
close to 100% on three datasets just using 20% labeled samples.
Finally the model is tested on data from one of the distributed
Electrosense sensors over a long term of 500 hours showing its
anomaly detection capabilities.

Index Terms—Deep learning, Spectrum monitoring, Anomaly
detection

I. INTRODUCTION

The new generation of wireless technologies is promising
improved throughput, latency and reliability enabling the cre-
ation of novel applications. The fifth generation wireless de-
ployments will be very heterogeneous ranging from millimeter
wave communications to massive MIMO and LoRa/Sigfox
deployments for line of sight (LOS), medium and long range
communication systems respectively. Such dense and hetero-
geneous deployment makes the enforcement and management
of the wireless spectrum usage difficult. In addition, manual
spectrum management is inefficient and can only deal with
a limited number of anomalies and measurement locations.
Complex spectrum regulations across frequency bands in
various countries along with illegal interference worsen the
problem. Automated spectrum monitoring solutions covering
frequency, time and space dimensions are becoming more
crucial than ever before.

Unlike other sensing contexts such as air quality, tempera-
ture or city traffic monitoring, wireless spectrum monitoring
on a large scale raises many unique problems ranging from
the data costs associated with the sheer volume of sensed
spectrum information to sensor quality and data privacy issues.

These wide ranging infrastructure problems were systemat-
ically analyzed and partially solved by the Electrosense1[1]
platform. Electrosense is interdisciplinary and combines the
power of crowdsourcing with Big data to solve the wireless
spectrum monitoring problem. The sensing devices are low
cost Software Defined Radio (SDR) dongles connected to em-
bedded devices like a Raspberry Pi or high end SDR devices
connected through a personal computer. Through Electrosense,
an Open Spectrum Data as a Service (OSDaaS) model was
introduced to address the usability of the spectrum data for
a wide range of stakeholders including wireless operators,
spectrum enforcement agencies, military and generic users.

In addition to the sensor infrastructure problems that were
tackled in Electrosense, various algorithmic challenges still
need to be addressed to provide advanced spectrum utilization
awareness. The central coup to achieve this vision is a wireless
spectrum anomaly detector which can continuously monitor
the spectrum and detect unexpected behavior. Furthermore, in
addition to the detection of anomalies, it is important to under-
stand the cause of an anomaly. This ranges from an unexpected
transmission in the analyzed band that can be classified [2], to
absence of an expected signal. Wireless anomaly detection to
some extent has been addressed in wireless sensor networks in
the past [3]–[5]. These techniques make use of derived expert
features from very low rate sensor data such as temperature
and pressure instead of high volume radio physical layer data
as is our interest. An anomaly detector for Dynamic Spectrum
Access (DSA) is presented in [6], where distributed power
measurements via cooperative sensing are used for anomaly
detection. The proposed detector is limited to authorized user
anomaly detection only, for the specific case of DSA. Similarly
[7] makes use of Hidden Markov Models (HMM) on spectral
amplitude probabilities that can detect interference on the
channel of interest again in the DSA domain.

Recently in [8], the authors presented a recurrent anomaly
detector based on predictive modeling of raw In-phase and
quadrature phase (IQ) data. The authors used a Long Short
Term Memory (LSTM) model for predicting the next 4 IQ
samples from the past 32 samples and an anomaly is detected
based on the prediction error. Even though this model works

1https://electrosense.org/
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on raw physical layer data which requires no expert feature
extraction, it is still not sufficiently automated and generic
for practical anomaly detection. First, different copies of the
same model need to be trained for different wireless bands
such that the model is able to predict anomalies specific
to the band of interest. For instance, an LTE signal in the
FM broadcast band is definitely an anomaly thus preventing
a single model to be trained on both bands. Second, the
model does not extract any interpretable features to understand
the cause of the anomaly. In [9], the authors extend this
prediction idea on spectrograms and test the model on some
synthetic anomalies. A reconstruction based anomaly detector
based on vanilla deep autoencoders is presented in [10]. This
model lacks interpretable feature extraction properties like
class labels which implies the need for training multiple copies
of the same model on different bands.

In this paper we argue that, reconstruction based anomaly
detection could be superior to prediction based techniques as
prediction is a tougher problem than reconstruction in complex
time series datasets. For instance, while digitally modulating
signals the basic assumption is each constellation point is
selected with equal probability to maximize the information
transfer which makes the prediction of the future symbols
difficult. On the other hand reconstruction of input data from
compressed features is an easier problem if the model can
efficiently capture the complex data distributions.

We propose SAIFE, an AAE based model which fills the
shortcomings of these state-of-the-art (SoA) models. First, we
show that a single model can be trained over multiple bands
in an unsupervised fashion avoiding the need for multiple
copies of models on various bands. Second, the same model
can be trained in a semi-supervised fashion for extracting
interpretable features such as signal bandwidth and position.
Third, the reconstructed signal from the proposed model can
be used for localizing anomalies in the wireless spectrum.
Furthermore we explore various other advantages of the model
such as wireless data compression and signal classification
which are significant contributions in contrast to the SoA
models [8]–[10].

The rest of the paper is organized as follows. The anomaly
detection problem is clearly stated in Section II. Section III
explains the AAE model used for anomaly detection and the
parameters used for training along with the dataset details.
Section IV details the performance results and discusses the
advantages of the proposed model. Section V explores the
signal compression and classification features of the model.
Conclusions and future work are presented in Section VI.

II. PROBLEM DEFINITION

Given: Let XS be the source time-series data, where x ∈
XS could be either a complex IQ vector or a frequency-based
PSD vector from any wireless frequency band. The dataset
XS contains wireless signals that are assumed to be normal
behavior. Thus the probability of anomalous behavior in this
source dataset is assumed to be low. The superset XS = XS0∪
XS1... ∪XSn contains signals from various frequency bands.

(a) Vanilla autoencoder (b) Variational autoencoder

Fig. 1: (a) Encoder decoder structure of an unsupervised vanilla autoencoder
model, (b) Stochastic variant of the autoencoder where the internal

representations are probability distributions in general

Goal: A model that learns the source data distribution
p(XS) and detects when a target vector’s distribution deviates
from the source data distribution. For each target vector
x ∈ XT , XT being the test dataset, the model should infer
whether the vector is normal (H0) or anomalous (Ha), where
H0 and Ha are hypothesis listed below.
• H0: Sample data comes from p(XS)
• Ha: Sample data does not come from p(XS)

A signal type of x ∈ XSl from frequency band l occurring in
a band k where we are expecting XSk is also an anomalous
behavior which demands the model to capture class labels for
fine grained anomaly detection.

Assumptions:
1) The probability of anomalous behavior in the source

dataset is very low.
2) No explicit anomaly labeling is done on the source and

target dataset.
3) No expert feature extraction is performed before feeding

data to the model.

III. MODELS

We leverage the recent advances in generative modeling
using neural networks which are trained through backprop-
agation directly from data [11]–[14]. The key insight of these
previous work is to bring the higher dimensional input data
to some lower dimensional latent space (Z), whose prior
distributions can be specified. This latent space which captures
relevant features or settings can be then used to reconstruct the
actual input data, ideally with minimal reconstruction loss. A
basic introduction to some of the recent SoA generative models
are covered in the following subsections.

A. Autoencoder and Variational Autoencoder (VAE)

A traditional autoencoder, as shown in Figure 1, is a neural
network that consists of an encoder (E) and a decoder (D). The
encoder and decoder are trained to reduce the reconstruction



loss. This entire network basically performs a non-linear
dimensionality reduction optimizing the encoder and decoder
parameters (θ and φ), the neural network weights, to achieve
minimum reconstruction loss such as minimum squared error
as given below

θ, φ = argmin
θ,φ

||x− x̂||2 (1)

A VAE [11] also makes use of an its encoder-decoder
structure. VAEs encode the input data vector to a vector z
in the latent space Z whose priors can be imposed by using a
Kullback-Leibler (KL) divergence penalty. VAE optimizes the
network parameters θ and φ to minimize the following upper-
bound on the negative log-likelihood of x, where pdata is the
distribution of the data x:
Ex∼pdata [−log pφ(x)] < Ex∼pdata [Ez∼qθ(z|x)[−log(pφ(x|z)]]

+ Ex∼pdata [KL(qθ(z|x)||pφ(z))]
(2)

Thus VAE optimize the reconstruction loss (first term)
similar to a standard autoencoder but adds regularization terms
(second term: KL divergence or cross-entropy term) which
helps it to learn a latent representation that is consistent with
the defined prior pφ(z).

B. Adversarial autoencoder (AAE)

Adversarial autoencoders [12] make use of the recent ad-
vances in generative modeling [13] to replace the KL diver-
gence in VAEs with adversarial training that encourages the
decoder to map the imposed prior to the data distribution.
Thus AAE provides two major advantages over VAE: (i)
the model ensures that the decoder will generate meaningful
samples if we sample from any part of the prior space and
(ii) as the aggregate posterior matches the prior distribution,
variations of these distributions can be used for detecting
unknown data inputs which is very useful for applications such
as anomaly detection. In addition, AAE provides a flexible
and robust architecture for semi-supervised learning and data
visualization.

C. SAIFE description

We make use of a deep learning model based on AAE to
enable all the requirements mentioned in the problem defini-
tion as shown in Figure 2. An LSTM layer with 512 cells is
used as the encoder for extracting interpretable features while
a Convolutional Neural Network (CNN) based decoder is
employed for reconstructing the input data from the extracted
features. The AAE architecture is trained in a semi-supervised
fashion for making the features more interpretable while the
reconstruction is fully unsupervised. Two layer feed forward
networks with 256 cells and relu activations are employed
in both discriminators. The LSTM output is fed through a
softmax layer for signal classification and a linear layer for
extracting the latent features.

The discriminators (Ds) are neural networks that evaluate
the probability that the latent code z is from the prior distri-
bution p(z) that we are trying to impose rather than a sample

Input  
PSD vector ( )x

Reconstructed PSD vector ( )xˆ

LSTM Encoder

CNN Decoder

ClassFeatures
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Draw samples from 

 (z|0, I)

Discriminator

Input

Draw samples from

Cat(y)

Discriminator

Input

Sigmoid out Sigmoid out

 
 

 Latent Variables 

Fig. 2: Model architecture for anomaly detection.

from the output of the encoder (E) model. The discriminator
receives z from both the encoder and the prior distribution and
is trained to distinguish between them. The encoder is trained
to confuse the discriminators into believing that the samples
it generates are from the prior distribution. Thus the encoder
is trained to reach the solution by optimizing both networks
by playing a min-max adversarial game which is expressed in
[13] as

min
E

max
Ds

Ez∼p(z)[log(Ds(z))]+Ex∼pdata [log (1−Ds(E(x)))]

(3)
Generative models try to model the underlying distributions

of the input data, the latent variables, which are further used
for data reconstruction. In SAIFE, the input PSD data is
assumed to be generated by the latent Class variable which
comes from a Categorical distribution with number of cat-
egories k =number of frequency bands and the continuous
latent Features from a Gaussian distribution of zero mean and
unit variance; p(y) = Cat(y) and p(z) = N (z|0, I).

D. Datasets

We use three spectrum datasets along with one synthetic
anomaly set to evaluate the performance of the used model.
A synthetic spectrum dataset is necessary to understand the
performance of the model in a controlled environment. The
synthetic dataset consists of four different signal types with
signal parameters as reported in Table I. The signals being (i)
single-cont: single continuous signal with random bandwidth,
signal-to-noise ratio (SNR) and center frequency, (ii) single-
rshort: pulsed signals in time with similar parameters as
single-cont, (iii) mult-cont: multiple continuous signals with



Type single-cont, single-rshort,
mult-cont, dethop

Input frame size 6x64
SNR Range 5dB to +20dB
Number of training samples 6000 vectors
Number of test samples 6000 vectors

TABLE I: Synthetic signal dataset parameters.

Type scont, randpulses, wpulse, oclass
Input frame size 6x64
SNR Range -20dB to +20dB
Number of training samples 6000 vectors
Number of test samples 6000 vectors

TABLE II: Synthetic anomaly dataset parameters.

Fig. 3: Sample signals single-cont, single-rshort, mult-cont and dethop from
synthetic signal dataset (time on y-axis and frequency on x-axis).

possible overlap and (iv) dethop: random bandwidth and SNR
signals with deterministic shifts/hops in frequency as depicted
in Figure 3. Similarly, four synthetic signals (i) scont: same as
single-cont, (ii) randpulses: random pulsed transmissions on
the given band, (iii) wpulse: pulsed wideband signals covering
the entire frequency, (iv) oclass: signals from other classes in
synthetic dataset are used as anomalies.

In addition to the synthetic dataset we validate using two
real wireless datasets. The first is a SDR dataset collected
using a HackRF SDR from two different cities in Belgium
covering frequencies from 10 MHz to 3 GHz. HackRF with
its firmware sweep mode can scan the spectrum at up to 8
GHz per second, which allows scanning of 0-6 GHz under
a second. Twelve frequency bands are selected from these
spectrum scans, continuous in time covering various audio
and video broadcast, GSM and LTE bands with a frequency
resolution of 100 KHz whose frequency ranges are listed in
Table III. The second dataset consists of PSD sensor data
from multiple Electrosense sensors deployed all over Europe
retrieved through the open API2 with 7 selected frequency
bands as listed in Table III.

Dataset and bands Frequencies (MHz)
SDR dataset, 0-11 80-107, 109-115.5, 117-140, 166-172,

196-208, 212.5-217.5, 220-227.5, 388-396,
422-427, 640-660, 790-800, 920-960.

Electrosense dataset, 0-6 86-108, 192-197, 790-801,
801-810, 811-821, 933-935, 955-960.

TABLE III: SDR and Electrosense dataset frequency bands.

E. Model training

All the datasets mentioned in the previous section are split
into two subsets, a training and a testing subset, with equal

2https://electrosense.org/open-api-spec.html
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Fig. 4: Probability density functions of reconstruction error, continuous
discriminator error and categorical discriminator error for dethop signal and

dethop signal with scont anomaly.

number of vectors. A seed is used to generate random mutually
exclusive array indices, which are then used to split the data
into two ascertaining the training and testing sets are entirely
different. The model is trained in an unsupervised fashion
to reduce the mean squared error between the input and
decoder output and a semi-supervised fashion to learn the the
continuous features and class labels. The adversarial networks
as well as the autoencoder are trained in three phases: the
reconstruction, regularization and semi-supervised phase as
mentioned in [12]. The Adam optimizer [15], a first-order
gradient based optimizer, with a learning rate of 0.001 is used
for training in all the phases. In the semi-supervised phase the
model is trained to learn the class, position and bandwidth of
the input signal by training it on 20% of the labeled samples
from the training set.

F. Implementation details

The model is implemented using TensorFlow [16], a data
flow graph based numerical computation library from Google.
Python and C++ bindings of Tensorflow makes the usage of
the final trained model easily portable to host based SDR
frameworks like GNU Radio [17]. The trained model can be
easily imported as a block in GNU Radio which can be readily
used in practice with any supported hardware front-end.

https://electrosense.org/open-api-spec.html
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ROC curves are not plotted.

IV. ANOMALY DETECTION

Once the training process is complete, the model weights are
frozen and new input data is fed to the model. As mentioned
in the model architecture section, anomalies are detected
primarily based on the reconstruction error of the model. In
addition to the reconstruction error, the classification error and
the discriminator loss are also used for detecting anomalous
behaviors.

A. Detection scores

Three scores are used to detect whether the input data frame
is anomalous or not. They are

1) Reconstruction loss: This error measures the similarity
between the input data and the reconstructed data de-

fined as Rl =
N∑
i=0

|x − x̂| where x is the frame input,

x̂ = D(z) is the decoder frame output and N is the
number of data points in the frame.

2) Discriminator loss: The discriminator in the AAE model
is trained to distinguish between the samples from the
prior distribution and the samples generated by the en-
coder. We use the same discrimination loss used during
the training process which is defined as Dl = σ(z, 1)
where σ is the sigmoid cross entropy. The loss from both

continuous (Dlcont) and categorical (Dlcat) discrimina-
tors are used for computing the final anomaly score.

3) Classification error: The class labels predicted by the
encoder is cross checked with the original band of
interest for detecting the presence of other known but
unexpected signals in a selected frequency band.

A simple n-sigma threshold is employed on the reconstruc-
tion and discriminator loss based on the mean and standard
deviation values from the training data. An input data frame
is classified as anomalous if Ascore is True:

Ascore = (Rl > (µRlt + n ∗ σRlt))
∨((µDltcont−n∗σDltcont) > Dlcont > (µDltcont+n∗σDltcont))
∨ ((µDltcat − n ∗ σDltcat) > Dlcat > (µDltcat + n ∗ σDltcat))

∨ (ClassEncoder! = Classinput) (4)

The threshold value n is selected empirically based on the
expected true positive rate and false detection rate. From the
probability distributions of dethop signal and dethop signal
with scont anomaly shown in Figure 4, it can be clearly noticed
that the reconstruction loss along with class labels plays a
major for anomaly detection.
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anomaly, anomaly vectors are randomly selected from other classes and specific SNR based ROC curves are not plotted.

B. Performance comparisons

To evaluate the performance of the anomaly detector on
different datasets, the false alarm rate and the true detection
rate are plotted for various frequency bands after injecting
different synthetic anomalies. Figure 5 shows the Receiver
operating characteristic (ROC) curves on the synthetic dataset
for different SNRs. Anomaly signals similar to the original
signals are intensionally selected to thoroughly analyze the
detection capabilities of the model. For instance, from the
ROC curves it can be seen that detection of scont anomaly
is difficult in mult-cont band as another continuous signal is
not an anomalous behavior in the multiple continuous signal
band. Similarly detection of wpulse works well only on SNRs
above 0 dB as the signal is only visible above the noise floor
above 0 dB.

These experiments are repeated on the SDR dataset and the
results are plotted in Figure 6. Only the two best and worst
performing frequency bands for different anomalies based on
the Area Under Curve (AUC) for the lowest anomaly SNR
of -20dB are shown due to space limitations, as there are 12
frequency bands in the SDR dataset. Results similar to the
synthetic dataset can be noticed in the real capture SDR dataset
also. Detecting scont and randpulses anomalies in frequency
band 0 (80-107 MHz) is very difficult as the selected band is
very wide and it contains strong FM broadcast stations. Similar

results can be noticed in the the other worst performing band
11 (920-960 MHz) which contains GSM signal transmissions
that includes both continuous and hopping transmissions. This
shows the pressing need to split the 40 MHz bandwidth to
multiple bands, for instance continuous and random hopping
bands, for better detection accuracies. It can be also noticed
that the oclass detection accuracies are quite good even in the
worst performing band 0 showing the robustness of the signal
classification module of the encoder.

Fig. 7: Localized anomalies for three different synthetic anomalies. Original
input signal, decoder reconstructed signal and the localized anomaly is

shown in each row from left to right. First row: wpulse anomaly on dethop
signal, second row: randpulses anomaly on mult-cont signal, third row:

scont anomaly on single-rshort signal.
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C. Anomaly localization

Localizing anomalies in the wireless frequency spectrum is
not common in any of the SoA algorithms. SAIFE presents a
simple and robust way to localize the anomalous region from
the input PSD data which is a significant contribution of this
paper. In addition to detection of anomalies, the reconstruction
error along with the semi-supervised features can be used
to localize and understand the anomaly better as shown in
Figure 7. Anomaly localization is achieved by plotting the ab-
solute reconstruction error, that is |x̂−x|. This method works
well unless there is a drastic change in the estimated class label
which can be noticed in the third row where an scont anomaly
occurs in an srshort band. The model accurately detects it as
an anomaly since there is a variation in the estimated class
label, but shows the srshort signal as the anomalous region
instead of scont. Figure 9 gives some sample plots of the
estimated signal position and bandwidth. The current model is
only trained for three semi-supervised features including the

class label and these interpretable features can be used for
analyzing the anomalies better.

D. Anomaly detection in the wild

To understand the performance on detecting real anomalies,
the model is tested on the real-world Electrosense dataset. The
model is trained on 7 days of data from one of the Electrosense
sensors and tested on the next 500 hours for anomalies
with a detection threshold of 3σ (n = 3). The number of
detected anomalies, based on Ascore, along with a few sample
anomalies for 7 frequency bands are shown in Figure 8.
The model detects unexpected missing transmissions (top-
right and bottom-right), high power transmissions (bottom-
left) and some out of band transmissions (top-left). It can be
noticed that after 230 hours the 192-197 MHz bands started
giving more anomalous detections. Visual inspection of the
anomalous PSD patches in this band revealed transmission
pattern variations. These detected variations could be either
because of the transmitter behavior changes or from the posi-
tion/antenna changes of the sensor. The model also provides
the flexibility to add these anomalous detections to the training
set, enabling incremental learning, if the user believes that
the behavior is normal. Incorporating this user feedback and
enabling automated retraining of models on these kind of
anomalous behaviors will be addressed in future work.

V. SIGNAL COMPRESSION AND CLASSIFICATION

To control the data transfer costs associated with the sens-
ing, Electrosense sensors enable three pipelines with very low,
medium and high data transfer costs namely: Feature, PSD
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and IQ pipeline. While the IQ pipeline allows to send raw
data to the backend, which can be used to support a broad
range of applications, the data transfer rate required is in the
30 Mbps to 100 Mbps range based on the sampling rate of
the sensor. The PSD pipeline on the other hand brings down
this rate to hundreds of Kbps. In this section we analyze the
compression and classification capabilities of SAIFE to reduce
the associated data transfer costs.

A. Traditional Spectrum Representation

In spite of the popularity of various lossy and lossless
compression algorithms in image and video processing com-
munities, there are only a few compression algorithms fine
tuned for wireless spectrum data. In [18] the authors presented
a compression algorithm based on Chebyshev polynomials.
The authors in [19] presented a method to separate spectrum
noise and other relevant signals specific to L-band satellite
signals and then did separate compression to achieve better re-
sults when compared to JPEG standards. The aforementioned
methods are very specific and lack the compression flexibility
when the input data is in multiple formats such as PSD or IQ.

B. Non-linear data compression

Recently unsupervised deep learning models have shown
great improvements in compressing input information. In [20]
the authors have achieved 4X to 16X compression ratio on
raw sampled IQ data using autoencoder models. In SAIFE,
20 compressed features are used for representing the input
PSD frame. This helps to achieve a lossy compression of
19X, 60X and 120X on the Synthetic, Electrosense and SDR
datasets respectively, which can considerably reduce the data
transfer costs. Mean absolute reconstruction error of SAIFE
with 20 features are summarized in Table IV. In addition
to spectrum reconstruction these features can be used for
anomaly detection and signal classification which makes it
more attractive. The models can be easily adapted for different
data inputs, for instance PSD data in time and frequency or IQ
data supporting flexible compression architectures for different
sensor data pipelines. The dimension of the compressed feature
space along with the model complexity can be adapted to
suit the reconstruction loss requirements. For instance, the
number of features required to represent the time-frequency
PSD patches of static wireless channels like commercial FM

bands will be very less when compared to very random
hopping channels.

An initial analysis is performed, on the synthetic dataset,
to understand the trade-off between level of compression
and anomaly detection performance by varying the number
of continuous features, thereby the compression ratio of the
model, which is presented in Figure 10. At very low (-
20 dB) and high (20 dB) anomaly SNRs there are not much
performance gains by increasing the number of features as
expected. Detecting signals at -20 dB SNR is very difficult
even with a large number of features whereas at 20 dB SNR
with a smaller set of features can easily detect anomalies due
to large variations in the reconstruction loss. While at common
SNR values (-10dB, 0 and 10dB) the anomaly detection
performance increases with increasing number of features. We
would like to emphasize that the number of features required
to achieve reasonable detection performance will depend on
the input data dimensions, the encoder and decoder capacity
and the dataset complexity itself.

Dataset Classification Mean absolute
accuracy (%) reconstruction error

Synthetic dataset 92.86 7.67 (for 6x64 samples)
SDR dataset 100 84.12 (for 6x400 samples)
Electrosense dataset 100 101.16 (for 6x221 samples)

TABLE IV: Band classification accuracy and reconstruction errors on the
test data of different datasets.

C. Wireless signal classification

In addition to anomaly detection ROC curves, wireless band
classification accuracies on the test data of three datasets are
summarized on Table IV. Since the real wireless bands use dif-
ferent parameters such as signal bandwidths, modulation type,
and temporal occupancies at mostly high SNRs, the wireless
band classification problem is not very tough as the classical
modulation classification problem [2]. On the synthetic dataset
the model confuses between single-cont and mult-cont signal
resulting in a classification accuracy of 92.86%. The confusion
matrix for the same is also shown in Figure 11. The model
achieves excellent classification accuracy of 100% on the
real SDR and Electrosense dataset. The high classification
accuracy stress the fact that a categorical variable helps the
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Fig. 11: Confusion matrix for the synthetic dataset

encoding process which in-turn helps the decoder to generate
fine variations which are specific to a particular class.

VI. CONCLUSION AND FUTURE WORK

Automated monitoring of wireless spectrum over frequency,
time and space is still a difficult research problem. In this
paper we have analyzed the use of an AAE model in wireless
spectrum data anomaly detection, compression and signal
classification. We have shown that the proposed model can
achieve good anomaly detection and localization along with
interpretable feature extraction. The model also can achieve a
wireless band classification accuracy close to 100% by only
using 20% labeled samples.

In future we would like to perform detailed comparisons of
the proposed model with similar prediction based models and
also evaluate the performance gains by using raw IQ samples.
Even though we have validated the model performance on
one of the Electrosense sensors, we would like to propose
some concrete similarity scores that can be used to select
closely located or similar spectrum scanning sensors, to enable
deployment of a single model across sensors. Further we
would like to include user feedback in the entire anomaly
detection loop and make the training process fully automated
to fulfill the automated spectrum monitoring dream.
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